首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The MRL/MpJ mouse is an inbred laboratory strain of Mus musculus, known to exhibit enhanced autoimmunity, increased wound healing, and increased regeneration properties. We report the full-length mitochondrial DNA (mtDNA) sequence of the MRL mouse (Accession # EU450583), and characterize the discovery of two naturally occurring heteroplasmic sites. The first is a T3900C substitution in the TPsiC loop of the tRNA methionine gene (tRNA-Met; mt-Tm). The second is a heteroplasmic insertion of 1-6 adenine nucleotides in the A-tract of the tRNA arginine gene (tRNA-Arg; mt-Tr) at positions 9821-9826. The level of heteroplasmy varied independently at these two sites in MRL individuals. The length of the tRNA-Arg A-tract increased with age, but heteroplasmy at the tRNA-Met site did not change with age. The finding of naturally occurring mtDNA heteroplasmy in an inbred strain of mouse makes the MRL mouse a powerful new experimental model for studies designed to explore therapeutic measures to alter the cellular burden of heteroplasmy.  相似文献   

2.
For identification of somatic mitochondrial DNA (mtDNA) mutations, the mtDNA major noncoding region (D-loop) sequence in blood samples and carotid atherosclerosis plaques from patients with atherosclerosis was analyzed. Five point heteroplasmic positions were observed in 4 of 23 individuals (17%). Only in two cases could heteroplasmy have resulted from somatic mutation, whereas three heteroplasmic positions were found in both vascular tissue and blood. In addition, length heteroplasmy in a polycytosine stretches was registered at nucleotide positions 303–315 in 16 individuals, and also in the 16184–16193 region in four patients. The results suggest that somatic mtDNA mutations can occur during atherosclerosis, but some heteroplasmic mutations may appear in all tissues, possibly being inherited.  相似文献   

3.
A population study of heteroplasmy in the hypervariable region 1 (HV1) portion of the human mtDNA control region was performed. Blood samples from 253 randomly chosen individuals were examined using a sensitive denaturing gradient-gel electrophoresis (DGGE) system. This method is capable of detecting heteroplasmic proportions as low as 1% and virtually all heteroplasmy where the minor component is > or = 5%. Heteroplasmy was observed in 35 individuals (13.8%; 95% confidence interval [CI] 9.6-18.0). Of these individuals, 33 were heteroplasmic at one nucleotide position, whereas 2 were heteroplasmic at two different positions (a condition known as "triplasmy"). Although heteroplasmy occurred at a total of 16 different positions throughout HV1, it was most frequently observed at positions 16093 (n=13) and 16129 (n=6). In addition, the majority of heteroplasmic variants occurred at low proportions and could not be detected by direct sequencing of PCR products. This study indicates that low-level heteroplasmy in HV1 is relatively common and that it occurs at a broad spectrum of sites. Our results corroborate those of other recent reports indicating that heteroplasmy in the control region is more common than was previously believed-a finding that is of potential importance to evolutionary studies and forensic applications that are based on mtDNA variation.  相似文献   

4.
Ludwig A  May B  Debus L  Jenneckens I 《Genetics》2000,156(4):1933-1947
Data from 1238 fishes from 19 sturgeon species and 1 paddlefish were used to analyze heteroplasmy in sturgeon. Lengths of central repeat units ranged from 74 to 83 bp among sturgeon species. No repeat sequence was found in the paddlefish, Polyodon spathula. A general feature of the repeat units was the presence of termination associated sequence (TAS) motifs. About 50% of 138 interspecific mutations observed among the D-loop sequences are located 10 bp down- and upstream from these TAS motifs. Interestingly, most homoplasmic species showed deletions upstream to the TAS motifs, whereas deletions downstream to the TAS motifs observed in two species do not seem to preclude heteroplasmy. Calculations of secondary structures and thermal stabilities of repeat units showed DeltaG values for all heteroplasmic species to be <-8 and for most homoplasmic species DeltaG value to be >-8. Most heteroplasmic fishes had two and/or three repeat units. No homoplasmic sturgeon with >2 repeat units were observed. Molecular phylogeny based on the entire cytochrome b showed that heteroplasmy probably resulted from a single evolutionary event. Our data demonstrate that heteroplasmy is present in most sturgeon species and suggest that the thermal stability of the secondary structure of the repeat unit in combination with mutations downstream of the TAS sequences influences heteroplasmy.  相似文献   

5.
G. S. Wilkinson  F. Mayer  G. Kerth    B. Petri 《Genetics》1997,146(3):1035-1048
Analysis of mitochondrial DNA control region sequences from 41 species of bats representing 11 families revealed that repeated sequence arrays near the tRNA-Pro gene are present in all vespertilionine bats. Across 18 species tandem repeats varied in size from 78 to 85 bp and contained two to nine repeats. Heteroplasmy ranged from 15% to 63%. Fewer repeats among heteroplasmic than homoplasmic individuals in a species with up to nine repeats indicates selection may act against long arrays. A lower limit of two repeats and more repeats among heteroplasmic than homoplasmic individuals in two species with few repeats suggests length mutations are biased. Significant regressions of heteroplasmy, θ and π, on repeat number further suggest that repeat duplication rate increases with repeat number. Comparison of vespertilionine bat consensus repeats to mammal control region sequences revealed that tandem repeats of similar size, sequence and number also occur in shrews, cats and bighorn sheep. The presence of two conserved protein-binding sequences in all repeat units indicates that convergent evolution has occurred by duplication of functional units. We speculate that D-loop region tandem repeats may provide signal redundancy and a primitive repair mechanism in the event of somatic mutations to these binding sites.  相似文献   

6.
Heteroplasmic nucleotide polymorphisms are rarely observed in wild animal mitochondrial DNA. The occurrence of such site heteroplasmy is expected to be extremely rare at nonsynonymous sites where the number of nucleotide substitutions per site is low due to functional constraints. This report deals with nonsynonymous mitochondrial heteroplasmy from two wild fish species, chum salmon and Japanese flounder. We detected an A/C nonsynonymous heteroplasmic site corresponding to putative amino acids, Ile or Met, in NADH dehydrogenase subunit-5 (ND5) region of chum salmon. The heteroplasmic site was at the 3rd position of 58th codon. As for Japanese flounder we detected a C/T nonsynonymous heteroplasmic site corresponding to putative amino acids, Leu or Pro, in ND4 region. The heteroplasmic site was at the 2nd position of 450th codon. We also verified heteroplasmy at these sites by sequencing cloned fragments.  相似文献   

7.
The issue of mitochondrial heteroplasmy has been cited as a theoretical problem for DNA barcoding but is only beginning to be examined in natural systems. We sequenced multiple DNA extractions from 20 individuals of four Hawaiian Hylaeus bee species known to be heteroplasmic. All species showed strong differences at polymorphic sites between abdominal and muscle tissue in most individuals, and only two individuals had no obvious segregation. Two specimens produced completely clean sequences from abdominal DNA. The fact that these differences are clearly visible by direct sequencing indicates that substantial intra-individual mtDNA diversity may be overlooked when DNA is taken from small tissue fragments. At the same time, differences in haplotype distribution among individuals may result in incorrect recognition of cryptic species. Because DNA barcoding studies typically use only a small fragment of an organism, they are particularly vulnerable to sequencing bias where heteroplasmy and haplotype segregation are present. It is important to anticipate this possibility prior to undertaking large-scale barcoding projects to reduce the likelihood of haplotype segregation confounding the results.  相似文献   

8.
We demonstrate the presence of mitochondrial heteroplasmy for the cytochrome oxidase I (COI) gene of the brittle star (Astrobrachion constrictum). One of the 117 individuals analyzed contained two distinct single-strand conformation polymorphism (SSCP) haplotypes differing by two substitutions; another showed sequence evidence for heteroplasmy. We used polymerase chain reaction (PCR) cloning, SSCP, and sequencing of a 480 bp region of the 5' end of COI to isolate and characterize these haplotypes. This is the first properly substantiated case of heteroplasmy in an echinoderm species and may have arisen from paternal leakage.  相似文献   

9.
We report a unique heteroplasmic T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene in a multiplex family who manifested nonobstructive cardiomyopathy. The degree of mtDNA heteroplasmy generally correlated with the severity of the symptoms. This T-to-C transition disrupts hydrogen bonding in the region adjacent to the acceptor stem of the tRNA molecule. The thymine residue at position 9997 is highly conserved in mammals, as well as in various vertebrates and invertebrates. A PCR diagnostic test for the presence of the 9997 T-to-C transition revealed that the base change was always present in high proportion in affected family members, not present in unaffected family members, and never present in control subjects from various ethnic groups (25 groups sampled, 42 individuals), thus ruling out the possibility that this change represents a polymorphic variant in the general population. The degree of heteroplasmy in lymphoblast cultures also correlated with the level of enzyme activity present for cytochrome c oxidase (complex IV) and succinate cytochrome c oxidoreductase (complexes II and III). The absence of previously reported mtDNA mutations associated with hypertrophic cardiomyopathy was verified by both PCR diagnostic procedures and sequence analysis. All mitochondrial tRNA genes, as well as genes encoding ATPase subunits 6 and 8, were sequenced and found not to possess base changes consistent with the clinical profile. More detailed biochemical and molecular biological investigations are discussed.  相似文献   

10.
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.  相似文献   

11.
Disease-causing mutations in mitochondrial DNA (mtDNA) are typically heteroplasmic and therefore interpretation of genetic tests for mitochondrial disorders can be problematic. Detection of low level heteroplasmy is technically demanding and it is often difficult to discriminate between the absence of a mutation or the failure of a technique to detect the mutation in a particular tissue. The reliable measurement of heteroplasmy in different tissues may help identify individuals who are at risk of developing specific complications and allow improved prognostic advice for patients and family members. We have evaluated Pyrosequencing technology for the detection and estimation of heteroplasmy for six mitochondrial point mutations associated with the following diseases: Leber's hereditary optical neuropathy (LHON), G3460A, G11778A, and T14484C; mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS), A3243G; myoclonus epilepsy with ragged red fibers (MERRF), A8344G, and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)/Leighs: T8993G/C. Results obtained from the Pyrosequencing assays for 50 patients with presumptive mitochondrial disease were compared to those obtained using the commonly used diagnostic technique of polymerase chain reaction (PCR) and restriction enzyme digestion. The Pyrosequencing assays provided accurate genotyping and quantitative determination of mutational load with a sensitivity and specificity of 100%. The MELAS A3243G mutation was detected reliably at a level of 1% heteroplasmy. We conclude that Pyrosequencing is a rapid and robust method for detecting heteroplasmic mitochondrial point mutations.  相似文献   

12.
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.  相似文献   

13.
The presence of multiple mitochondrial genotypes (heteroplasmy) has been studied in normal individuals. Six multigenerational normal families were screened for heteroplasmy by PCR of the mitochondrial control region and the cytochrome c oxidase intergenic regions. Two individuals from different families exhibited multiple length polymorphisms in a homopolymeric tract at positions 16 184–16 193 and a grandmother in a third family was heteroplasmic for both cytosine and thymidine at position 15 945. Although the 15 945 T variant comprised 28% of the grandmother’s mitochondrial DNA, this sequence was not present in any of her descendants. Heteroplasmy was detected in 2.5% of the 96 mother-offspring pairs, consistent with the possibility that it may not be rare. Received: 18 August 1997 / Accepted: 10 November 1997  相似文献   

14.
The mitochondrial DNA (mtDNA) substitution rate and segregation of heteroplasmy were studied for the non-coding control region (D-loop) and 500 bp of the coding region between nucleotide positions 5550 and 6050, by sequence analysis of blood samples from 194 individuals, representing 33 maternal lineages. No homoplasmic nucleotide substitutions were detected in a total of 292 transmissions. The estimated substitution rate per nucleotide per million years for the control region (micro>0.21, 95% CI 0-0.6) was not significantly different from that for the coding region (micro>0.54, 95% CI 0-1.0). Variation in the length of homopolymeric C streches was observed at three sites in the control region (positions 65, 309 and 16,189), all of which were in the heteroplasmic state. Segregation of heteroplasmic genotypes between generations was observed in several maternal pedigrees. At position 309, a longer poly C tract length was strongly associated with a higher probability for heteroplasmy and rapid segregation between generations. The length heteroplasmy at positions 65 and 16,189 was found at low frequency and was confined to a few families.  相似文献   

15.
Restriction site heteroplasmy involving the enzymes NcoI and XbaI was detected in the mitochondrial DNAs of two individuals of the marine fish Sciaenops ocellatus. This represents only the sixth documented example of mitochondrial DNA restriction site heteroplasmy in animals. Two heteroplasmic individuals were found in a survey of nearly 750 individuals, suggesting that in most studies the incidence of mitochondrial DNA site heteroplasmy may be too low to be routinely detected.  相似文献   

16.
The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.  相似文献   

17.
Instances of point and length heteroplasmy in the mitochondrial DNA control region were compiled and analyzed from over 5,000 global human population samples. These data represent observations from a large and broad population sample, representing nearly 20 global populations. As expected, length heteroplasmy was frequently observed in the HVI, HVII and HVIII C-stretches. Length heteroplasmy was also observed in the AC dinucleotide repeat region, as well as other locations. Point heteroplasmy was detected in approximately 6% of all samples, and while the vast majority of heteroplasmic samples comprised two molecules differing at a single position, samples exhibiting two and three mixed positions were also observed in this data set. In general, the sites at which heteroplasmy was most commonly observed correlated with reported control region mutational hotspots. However, for some sites, observations of heteroplasmy did not mirror established mutation rate data, suggesting the action of other mechanisms, both selective and neutral. Interestingly, these data indicate that the frequency of heteroplasmy differs between particular populations, perhaps reflecting variable mutation rates among different mtDNA lineages and/or artifacts of particular population groups. The results presented here contribute to our general understanding of mitochondrial DNA control region heteroplasmy and provide additional empirical information on the mechanisms contributing to mtDNA control region mutation and evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Structural characteristics and polymorphism of the long (LNR) and short (SNR) mitochondrial noncoding regions were studied in the liver fluke Fasciola hepatica. Flukes were sampled from several populations of Russia and Belarus. LNR amplification yielded a set of nine fragments, neighboring ones differing in length by one tandem repeat (85 bp), published for Australian flukes. The LNR amplification products of different lengths were cloned and sequenced. A comparison of the LNR sequences of Australian and Belarussian flukes revealed three nucleotide substitutions and one point heteroplasmy in the first positions of the imperfect repeat and four adjacent perfect repeats. The positions of the three mutations coincided in the perfect and imperfect repeats. The frequency of mutations was 4.0–4.7 %, while the frequency of heteroplasmic sites varied from 0.1 to 1.2%. It was shown that the mutations and the heteroplasmy of one site could change the structure and stability of the putative secondary structures of the perfect and imperfect repeats. SNR amplification in F. hepatica from several populations yielded fragments that differed from the published SNR sequence of Australian F. hepatica by one transversion (T → G in position 21). Both noncoding regions had several conserved and potential regulatory sequences. The possible causes of heteroplasmy and a concerted origin of substitutions in different repeats are discussed.  相似文献   

19.
The mysid crustacean Hemimysis anomala ('bloody-red shrimp') is one of the most recent participants in the invasion of European inland waters by Ponto-Caspian species. Recently the species also became established in England and the Laurentian Great Lakes of North America. Using information from mitochondrial cytochrome oxidase I (COI) gene sequences, we traced the invasion pathways of H. anomala ; the inferences were enabled by the observed phylogeographical subdivision among the source area populations in the estuaries of the Ponto-Caspian basin. The data distinguish two routes to northern and western Europe used by distinct lineages. One route has been to and through the Baltic Sea and further to the Rhine delta, probably from a population intentionally introduced to a Lithuanian water reservoir from the lower Dnieper River (NW Black Sea area) in 1960. The other lineage is derived from the Danube delta and has spread across the continent up the Danube River and further through the Main–Danube canal down to the Rhine River delta. Only the Danube lineage was found in England and in North America. The two lineages appear to have met secondarily and are now found intermixed at several sites in NW Europe, including the Rhine and waters linked with the man-made Mittellandkanal that interconnects the Rhine and Baltic drainage systems.  相似文献   

20.
The mitochondrial (mt) genome is present in many copies in human cells, and intra-individual variation in mtDNA sequences is known as heteroplasmy. Recent studies found that heteroplasmies are highly tissue-specific, site-specific, and allele-specific, however the functional implications have not been explored. This study investigates variation in mtDNA copy numbers (mtCN) in 12 different tissues obtained at autopsy from 152 individuals (ranging in age from 3 days to 96 years). Three different methods to estimate mtCN were compared: shotgun sequencing (in 4 tissues), capture-enriched sequencing (in 12 tissues) and droplet digital PCR (ddPCR, in 2 tissues). The highest precision in mtCN estimation was achieved using shotgun sequencing data. However, capture-enrichment data provide reliable estimates of relative (albeit not absolute) mtCNs. Comparisons of mtCN from different tissues of the same individual revealed that mtCNs in different tissues are, with few exceptions, uncorrelated. Hence, each tissue of an individual seems to regulate mtCN in a tissue-related rather than an individual-dependent manner. Skeletal muscle (SM) samples showed an age-related decrease in mtCN that was especially pronounced in males, while there was an age-related increase in mtCN for liver (LIV) samples. MtCN in SM samples was significantly negatively correlated with both the total number of heteroplasmic sites and with minor allele frequency (MAF) at two heteroplasmic sites, 408 and 16327. Heteroplasmies at both sites are highly specific for SM, accumulate with aging and are part of functional elements that regulate mtDNA replication. These data support the hypothesis that selection acting on these heteroplasmic sites is reducing mtCN in SM of older individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号