首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We examined the molecular and functional characterization of choline uptake in human colon carcinomas using the cell line HT-29. Furthermore, we explored the possible correlation between choline uptake and cell proliferation. Choline uptake was saturable and mediated by a single transport system. Interestingly, removal of Na+ from the uptake buffer strongly enhanced choline uptake. This increase in component of choline uptake under Na+-free conditions was inhibited by a Na+/H+ exchanger 1 (NHE1) inhibitor. Collapse of the plasma-membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium and by intracellular alkalinization. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), CTL2, CTL4 and NHE1 mRNA are mainly expressed in HT-29 cells. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in HT-29 cells and is responsible for choline uptake in these cells. We conclude that choline transporters, especially CTL1, use a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE1. Finally, cell proliferation was inhibited by HC-3 and tetrahexylammonium chloride (THA), which strongly inhibits choline uptake. Identification of this novel CTL1-mediated choline uptake system provides a potential new target for therapeutic intervention.  相似文献   

2.
The cholinergic neurons have long been a model for biochemical studies of neurotransmission. The components responsible for cholinergic neurotransmission, such as choline acetyltransferase, vesicular acetylcholine transporter, nicotinic and muscarinic acetylcholine receptors, and acetylcholine esterase, have long been defined as functional units and then identified as molecular entities. Another essential component in the cholinergic synapses is the one responsible for choline uptake from the synaptic cleft, which is thought to be the rate-limiting step in acetylcholine synthesis. A choline uptake system with a high affinity for choline has long been assumed to be present in cholinergic neurons. Very recently, the molecular entity for the high-affinity choline transporter was identified and is designated CHT1. CHT1 mediates Na+- and Cl-dependent choline uptake with high sensitivity to hemicholinium-3. CHT1 has been characterized both at the molecular and functional levels and was confirmed to be specifically expressed in cholinergic neurons.  相似文献   

3.
Synthesis of acetylcholine (ACh) by non‐neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+‐dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non‐neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non‐neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter‐like proteins, a five gene family choline‐transporter like protein (CTL)1–5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+‐independent and CTL1–5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non‐neuronal cell lines and presents a mechanism to target non‐neuronal ACh synthesis without affecting neuronal ACh synthesis.  相似文献   

4.
Homeostatic regulation of the plasma choline concentration depends on the effective functioning of a choline transporter in the kidney. However, the nature of the choline transport system in the kidney is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake in the rat renal tubule epithelial cell line NRK-52E. Choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 16.5 μM and a maximal velocity (Vmax) of 133.9 pmol/mg protein/min. The Vmax value of choline uptake was strongly enhanced in the absence of Na+ without any change in Km values. The increase in choline uptake under Na+-free conditions was inhibited by Na+/H+ exchanger (NHE) inhibitors. Choline uptake was inhibited by the choline uptake inhibitor hemicholinium-3 (HC-3) and organic cations, and was decreased by acidification of the extracellular medium and by intracellular alkalinization. Collapse of the plasma membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. NRK-52E cells mainly express mRNA for choline transporter-like proteins (CTL1 and CTL2), and NHE1 and NHE8. CTL1 protein was recognized in both plasma membrane and mitochondria. CTL2 protein was mainly expressed in mitochondria. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in NRK-52E cells and is responsible for choline uptake. This choline transport system uses a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE8. Furthermore, the presence of CTL2 in mitochondria provides a potential site for the control of choline oxidation.  相似文献   

5.
Homologues of the Na+/glucose cotransporter, the SGLT family, include sequences of mammalian, eubacterial, yeast, insect and nematode origin. The cotransported substrates are sugars, inositol, proline, pantothenate, iodide, urea and undetermined solutes. It is reasonable to expect that the SGLT family members share a similar or identical topology of membrane spanning elements, by virtue of their common ancestry and similar coupling of solute transport to downhill sodium flux. Here we examine their membrane topologies as deduced from diverse analyses of their primary sequences, and from their sequence correlations with the experimentally determined topology of the human Na+/glucose cotransporter SGLT1. Our analyses indicate that all family members share a common core of 13 transmembrane helices, but that some, like SGLT1 itself, have one additional span appended to the C-terminus, and still others, two. One bacterial member incorporates an additional span at the N-terminus. Sequence comparisons indicative of common ancestry of the SGLT and the [Na++ Cl] transporter families are introduced, and evaluated in light of their topologies. New evidence concerning the previously asserted common ancestry of SGLT1 and an N-acetylglucosamine permease of the bacterial phosphotransferase system is considered. Finally, we analyze observations which lead us to conjecture that the experimental strategy most commonly employed to reveal the topology of bacterial transporters (i.e., the fusion of reporter enzymes such as phoA alkaline phosphatase, beta-lactamase or beta-galactosidase, to progressively C-truncated fragments of the transporter) has often instead so perturbed local topology as to have entirely missed pairs of adjacent membrane spans. Received: 18 May 1996  相似文献   

6.
Synthesis of acetylcholine depends on the plasma membrane uptake of choline by a high affinity choline transporter (CHT1). Choline uptake is regulated by nerve impulses and trafficking of an intracellular pool of CHT1 to the plasma membrane may be important for this regulation. We have generated a hemagglutinin (HA) epitope tagged CHT1 to investigate the organelles involved with intracellular trafficking of this protein. Expression of CHT1-HA in HEK 293 cells establishes Na+-dependent, hemicholinium-3 sensitive high-affinity choline transport activity. Confocal microscopy reveals that CHT1-HA is found predominantly in intracellular organelles in three different cell lines. Importantly, CHT1-HA seems to be continuously cycling between the plasma membrane and endocytic organelles via a constitutive clathrin-mediated endocytic pathway. In a neuronal cell line, CHT1-HA colocalizes with the early endocytic marker green fluorescent protein (GFP)-Rab 5 and with two markers of synaptic-like vesicles, VAMP-myc and GFP-VAChT, suggesting that in cultured cells CHT1 is present mainly in organelles of endocytic origin. Subcellular fractionation and immunoisolation of organelles from rat brain indicate that CHT1 is present in synaptic vesicles. We propose that intracellular CHT1 can be recruited during stimulation to increase choline uptake in nerve terminals.  相似文献   

7.
Summary Proteoliposomes made by a butanol-sonication technique from electric organ presynaptic membranes showed choline transport activity. In contrast to intact nerve terminals, the uptake of choline was dissociated from its conversion to acetylcholine in this preparation. The kinetics of choline uptake by proteoliposomes was best described by two Michaelis-Menten components. At a low concentration of choline, uptake was inhibited by hemicholinium-3 and required external Na+ and, thus, closely resembled high-affinity choline uptake by intact cholinergic nerve terminals. Choline transport could be driven by the Na+ gradient and by the transmembrane potential (inside negative) but did not directly require ATP. External Cl, but not a Cl gradient, was needed for choline transport activity. It is suggested that internal K+ plays a role in the retention of choline inside the proteoliposome. Proteoliposomes should prove a useful tool for both biochemical and functional studies of the highaffinity choline carrier.Abbreviations ACh acetylcholine - HC-3 hemicholinium-3 - ChAT choline acetyltransferase  相似文献   

8.
A cellular suspension from rat submandibular glands was exposed to different concentrations of NH4Cl, and the variations of the intracellular concentration of calcium ([Ca2+]i) and the intracellular pH (pHi) were measured using fura-2 and 2′,7′-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein. More than 5 mmol/l NH4Cl significantly increased the [Ca2+]i without affecting the response to 100 µmol/l carbachol. When exposed to 1 and 5 mmol/l NH4Cl, the cells acidified immediately. At 30 mmol/l, NH4Cl first alkalinized the cells and the pHi subsequently dropped. This drop reflects the uptake of NH ions that dissociate to NH3 and H+ in the cytosol. These protons are exchanged for extracellular sodium by the Na+/H+ exchanger because the presence of an inhibitor of the exchanger in the medium increased the acidification induced by 1 mmol/l NH4Cl. Ouabain partly blocked the uptake of NH. In the combined presence of ouabain and bumetanide (an inhibitor of the Na+-K+-2Cl cotransporter), 1 mmol/l NH4Cl alkalinized the cells. The contribution of the Na/K ATPase and the Na+-K+-2Cl cotransporter in the uptake of NH was independent of the presence of calcium in the medium. Isoproterenol increased the uptake of NH by the cotransporter. Conversely, 1 mmol/l extracellular ATP blocked the basal uptake of NH by the cotransporter. This inhibition was reversed by extracellular magnesium or Coomassie Blue. It was mimicked by benzoyl-ATP but not by CTP, GTP, UTP, ADP, or ADPβS. ATP only slightly inhibited the increase of cyclic AMP (−22%) by isoproterenol but fully blocked the stimulation of the cotransporter by the β-adrenergic agonist. ATP increased the release of 3H-arachidonic acid from prelabeled cells but SK&F 96365, an imidazole-based cytochrome P450 inhibitor, did not affect the inhibition by ATP. It is concluded that the activation of a purinoceptor inhibits the basal and the cyclic AMP-stimulated activity of the Na+-K+-2Cl cotransporter. J. Cell. Physiol. 180:422–430, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

9.
Summary Experiments were performed usingin vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na+:Cl cotransporter and on transport-related oxygen consumption (QO2). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding onemm ouabain to, the basolateral solution [ouabain(zero-K+)] provided an index to apical cotransporter activity and was used to evaluated the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na+ and Cl, but not K+, while in the presence of AVP the apical cotransporter required all three ions.86Rb+ uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover,22Na+ uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure22Na+ uptake was strictly K+-dependent. The AVP-induced coupling of K+ to the Na+:Cl cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular22Na+ uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na+:Cl cotransport to Na+:K+:2Cl cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K+ to the apical Na+:Cl cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.  相似文献   

10.
Regulation of cell pH and cell volume require homeostatic control of intracellular cations and anions. Bicarbonate transporters play an important role in these cellular functions. The SLC4 and SLC26 gene families both encode bicarbonate transporter polypeptides. The SLC4 gene family includes four Na+-independent chloride-bicarbonate exchanger genes and multiple Na+-bicarbonate cotransporter and Na+-dependent anion-exchanger genes. The acute regulatory properties of the recombinant polypeptides encoded by these genes remain little studied. The most extensively studied among them are the Na+-independent anion exchangers AE1, AE2, and AE3. The widely expressed AE2 anion exchanger participates in recovery from alkaline load and in regulatory cell volume increase following shrinkage. AE2 can also be regulated by the ammonium ion. These properties are not shared by the closely related AE1 anion exchanger of the erythrocyte and the renal collecting duct Type A intercalated cell. Structure-function studies of recombinant proteins involving chimeras, deletions, and point mutations have delineated regions of AE2, which are important in the exhibition of the regulatory properties absent from AE1. These include regions of the transmembrane domain and the N-terminal cytoplasmic domain. Noncontiguous regions in the middle of the N-terminal cytoplasmic domain are of particular importance for acute regulation by several types of stimulus.  相似文献   

11.
The type IIa Na+/Pi, cotransporter (NaPi-IIa) mediates electrogenic transport of three Na+ and one divalent Pi ion (and one net positive charge) across the cell membrane. Sequence comparison of electrogenic NaPi-IIa and IIb isoforms with the electroneutral NaPi-IIc isoform pointed to the third transmembrane domain (TMD-3) as a possibly significant determinant of substrate binding. To elucidate the role of TMD-3 in the topology and mechanism underlying NaPi-IIa function we subjected it to cysteine scanning mutagenesis. The constructs were expressed in Xenopus oocytes and Pi transport kinetics were assayed by electrophysiology and radiotracer uptake. Cys substitution resulted in only marginally altered kinetics of Pi transport in those mutants providing sufficient current for analysis. Only one site, at the extracellular end of TMD-3, appeared to be accessible to methanethiosulfonate reagents. However, additional mutations carried out at D224 (replaced by E, G or N) and N227 (replaced by D or Q) resulted in markedly altered voltage and substrate dependencies of the Pi-dependent currents. Replacing Asp-224 (highly conserved in electrogenic a and b isoforms) with Gly (the residue found in the electroneutral c isoform) resulted in a mutant that mediated electroneutral Na+-dependent Pi transport. Since electrogenic NaPi-II transports 3 Na+/transport cycle, whereas electroneutral NaPi-IIc only transports 2, we speculate that this loss of electrogenicity might result from the loss of one of the three Na+ binding sites in NaPi-IIa.  相似文献   

12.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

13.
Subcellular studies of choline uptake of rat striatum indicated a correspondence between the Na+-dependent uptake and choline acetyltransferase (ChAc), whereas there was a lack of correspondence between the Na+-independent uptake and ChAc. Subcellular studies also showed a correspondence between the Na+-dependent uptake and hemicholinium-3 inhibition, and more important, particles that accumulate choline were shown to consist of at least two subcellular populations. A comparison was made of kinetic data from three areas of the rat brain: corpus striatum, cerebral cortex, and hypothalamus. Taken together, our data on choline uptake give added support to the idea that the Na+-dependent choline transport is concentrated in the striatum and specifically related to cholinergic nerve endings. Morphine and methadone in vitro inhibited the Na+-dependent choline uptake. In vivo morphine induced a significant lowering of theV max in the rat cerebral cortex, but not in the striatum. This finding is consistent with the known action of morphine on acetylcholine turnover.Preliminary reports of this work were presented at the Fifth Meeting of the American Society for Neurochemistry in New Orleans, March 1974, and the Fall ASPET Meeting in Montreal, August 1974 (1,2).  相似文献   

14.
Abstract: Our laboratory has recently cloned and expressed a brain- and neuron-specific Na+-dependent inorganic phosphate (Pi) cotransporter that is constitutively expressed in neurons of the rat cerebral cortex, hippocampus, and cerebellum. We have now characterized Na+-dependent 32Pi cotransport in cultured fetal rat cortical neurons, where >90% of saturable Pi uptake is Na+-dependent. Saturable, Na+-dependent 32Pi uptake was first observed in primary cultures of cortical neurons at 7 days in vitro (DIV) and was maximal at 12 DIV. Na+-dependent Pi transport was optimal at physiological temperature (37°C) and pH (7.0–7.5), with apparent Km values for Pi and Na+ of 54 ± 12.7 µM and 35 ± 4.2 mM, respectively. A reduction in extracellular Ca2+ markedly reduced (>60%) Na+-dependent Pi uptake, with a threshold for maximal Pi import of 1–2.5 mM CaCl2. Primary cultures of fetal cortical neurons incubated in medium where equimolar concentrations of choline were substituted for Na+ had lower levels of ATP and ADP and higher levels of AMP than did those incubated in the presence of Na+. Furthermore, a substantial fraction of the 32Pi cotransported with Na+ was concentrated in the adenine nucleotides. Inhibitors of oxidative metabolism, such as rotenone, oligomycin, or dinitrophenol, dramatically decreased Na+-dependent Pi import rates. These data establish the presence of a Na+-dependent Pi cotransport system in neurons of the CNS, demonstrate the Ca2+-dependent nature of 32Pi uptake, and suggest that the neuronal Na+-dependent Pi cotransporter may import Pi required for the production of high-energy compounds vital to neuronal metabolism.  相似文献   

15.
The neuroblastoma X glioma hybrid clone NG108-15 is able to release acetylcholine upon depolarization and form cholinergic neuromuscular synapses in culture. Normal functioning of cholinergic synapses is thought to be dependent on the ability of a neuron to take up extracellular choline, since neurons are unable to synthesize choline de novo. For these two reasons it became important to characterize the choline uptake system of NG108-15 cells. The uptake system appears to bear little if any resemblance to the Na+-dependent high-affinity choline uptake system normally associated with cholinergic neurons. Although the cells appear to possess both high- and low- affinity choline uptake systems, neither system is dependent on Na+ and uptake actually is increased about 60% by the substitution of sucrose for NaCl. Acetylcholine synthesis also is not dependent on Na+, since sucrose, substituted for NaCl, also stimulates acetylcholine synthesis. Changes in the concentrations of the other ions in the uptake medium have little effect on uptake, with the exception that elevated Ca2+ or Mg2+ reverses the stimulation of choline uptake produced by substitution of sucrose for NaCl. Choline uptake is inhibited by hemicholinium-3, but only at high concentrations of the drug (IC50= 30–80 μm ). The metabolic poisons cyanide and iodoacetate inhibit uptake by only 30-40%. Growth of the cells in N6,O2′ dibutyryladenosine-3′,5′-cyclic monoposphate, which promotes functional and morphological differentiation of the cells, decreased slightly the total amount of choline taken up but had no additional effect on the uptake system. Thus, it appears that NG108-15 cells are capable of forming functional cholinergic synapses with muscle cells even though the neuroblastoma does not possess the high-affinity choline uptake system normally associated with cholinergic neurons.  相似文献   

16.
The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genetic mutation of the Na+/H+ exchanger isoform 1, N266H, was discovered in a human patient through exome sequencing. We examined the effect of this mutation on expression, targeting and activity of the Na+/H+ exchanger. Mutant N266H protein was expressed in AP-1 cells, which lack their endogenous Na+/H+ exchanger protein. Targeting of the mutant protein to the cell surface was normal and expression levels were only slightly reduced relative to the wild type protein. However, the N266H mutant protein had no detectable Na+/H+ exchanger activity. A histidine residue at this location may disrupt the cation binding site or the pore of the Na+/H+ exchanger protein.  相似文献   

17.
18.
Acidosis commonly observed in solid tumors like pancreatic cancer promotes genetic instability and selection of a more malignant phenotype of cancer cells. Overexpression or activation of integral membrane proteins mediating H+ efflux may contribute to extracellular acidification. Neurotensin (NT) induces intracellular alkalinization and stimulates interleukin-8 production in pancreatic cancer cells and, as demonstrated here, the stable NT analog Lys8-ψ-Lys9NT(8-13) enhances the amiloride-sensitive, Na+-dependent transmembrane H+ flux by a factor of 2.05 ± 0.28 and 2.69 ± 0.07 in BxPC-3 and PANC-1 pancreatic cancer cells, respectively, by phosphorylation of the Na+/H+ exchanger 1 (NHE1). Human genome-wide gene expression analysis was performed to detect effects of Lys8-ψ-Lys9NT(8-13) on BxPC-3 cells. Results indicated upregulation of genes involved in regulation of NHE1, hypoxic response and glycolysis in response to Lys8-ψ-Lys9NT(8-13) even under normoxic conditions. Therefore, our findings suggest that growth factors like NT may be implicated in the early progression of pancreatic cancer by localized acidification and induction of an aerobic glycolytic phenotype with higher metastatic potential in small cell aggregates.  相似文献   

19.
Kinetic analyses were made on intracellular Na+-dependent Ca2+ uptake by myocardial cells and neuroblastoma cells (N-18 strain) in culture. Cells loaded with various concentrations of Na+ could be prepared by incubating them in Ca2+-free medium containing various concentrations of Na+. Cells pre-loaded with various concentrations of Na+ were incubated in medium containing Ca2+ and 45Ca. The resulting 45Ca uptake by the two types of cell depended greatly on the initial intracellular concentrations of Na+. Lineweaver-Burk plots of the initial rate of Ca2+ uptake against the external concentration of Ca2+ fitted well to straight lines obtained by linear regression (r > 0.95). This result shows that Ca2+ uptake by the two types of cell was achieved by a carrier-mediated transport system. This Na+-dependent Ca2+ uptake was accompanied by Na+ release and the ratio of Na+ release to Ca2+ uptake was close to 3 : 1. A comparison of the kinetic data between myocardial cells and N-18 cells suggested that N-18 cells possess a carrier showing the same properties as that of myocardial cells, i.e.: (1) a similar dependency on the intracellular concentration of Na+; (2) the coincidence of the apparent Michaelis constants for Ca2+ (0.1 mM); (3) the similarities of the Ki values for Co2+, Sr2+ and Mg2+ (Co2+ < Sr2+ < Mg2+) and (4) a similar dependency on pH. However, the maximal initial rate, V, of N-18 cells was about 1100 that of myocardial cells. The rate of Na+-dependent Ca2+ uptake by non-excitable cells was much lower than that by myocardial cells.  相似文献   

20.
Summary Electrical currents associated with sodium-coupled alanine transport in mouse pancreatic acinar cells were studied using the method of whole-cell recording with patch pipettes. Single cells or small clusters of (electrically coupled) cells were isolated by collagenase treatment. The composition of the intracellular solution could be controlled by internal perfusion of the patch pipette. In this way both inward and outward currents could be measured under zero-trans conditions, i.e., with finite concentrations of sodium andl-alanine on one side and zero concentrations on the other. Inward andoutward currents for equal but opposite concentration gradients were found to be of similar magnitude, meaning that the cotransporter is functionally nearly symmetric. The dependence of current on the concentrations of sodium andl-alanine exhibited a Michaelis-Menten behavior. From the sodium-concentration dependence of current as well as from the reversal potential of the current in the presence of an alanine-concentration, gradient, a sodium/alanine stoichiometric ratio of 1:1 can be inferred. The finding that N-methylated amino acids may substitute, forl-alanine, as well as the observed pH dependence of currents indicate that the pancreatic alanine transport system is similar to (or identical with) the A-system which is widespread in animal cells. The transport system is tightly coupled with respect to Na+; alanine-coupled inward flow of Na+ is at least 30 times higher than uncoupled Na+ flow mediated by the cotransporter. The current-voltage characteristic of the cotransporter could be (approximately) determined from the difference of transmembrane current in the presence and in the absence ofl-alanine. The sodium-concentration dependence of the current-voltage characteristic indicates that a Na+ ion approaching the binding site from the extracellular medium has to cross part of the transmembrane electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号