首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ineffective alfalfa nodules formed by Rhizobium meliloti nif::Tn5 mutants were examined by light and electron microscopy. R. meliloti nifH::Tn5 mutants formed nodules that were similar in structure to wild-type nodules except that nifH- bacteroids accumulated a compact, electron-dense body. In contrast to nodules induced by wild type and nifH mutants, nifDK- R. meliloti mutants induced nodules which contained numerous starch grains and prematurely senescent bacteroids. In addition, meristematic activity in nifDK- nodules ceased significantly earlier than in nifH- nodules. All mutant nodules exhibited elevated levels of rough endoplasmic reticulum and Golgi membranes compared to wild-type nodule cells. These elevated levels may reflect either a response to nitrogen starvation in the ineffective nodules or an abnormal synthesis and export of nodule-specific proteins during later developmental stages.  相似文献   

2.
In vitro evolution of the polyhydroxyalkanoate (PHA) synthase gene from Pseudomonas sp. 61-3 (phaC1(Ps)) has been performed to generate highly active enzymes. In this study, a positive mutant of PHA synthase, Glu130Asp (E130D), was characterized in detail in vivo and in vitro. Recombinant Escherichia coli strain JM109 harboring the E130D mutant gene accumulated 10-fold higher (1.0 wt %) poly(3-hydroxybutyrate) [P(3HB)] from glucose, compared to recombinant E. coli harboring the wild-type PHA synthase gene (0.1 wt %). Recombinant E. coli strain LS5218 harboring the E130D PHA synthase gene grown on dodecanoate produced more poly(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] (20 wt %) copolymer than an LS5218 strain harboring the wild-type PHA synthase gene (13 wt %). The E130D mutation also resulted in the production of copolymer with a slight increase in 3HB composition, compared to copolymer produced by the wild-type PHA synthase. In vitro enzyme activities of the E130D PHA synthase toward various 3-hydroxyacyl-CoAs (4-10 carbons in length) were all higher than those of the wild-type enzyme. The combination of the E130D mutation with other beneficial mutations, such as Ser325Thr and Gln481Lys, exhibited a synergistic effect on in vivo PHA production and in vitro enzyme activity. Interestingly, gel-permeation chromatography analysis revealed that the E130D mutation also had a synergistic effect on the molecular weight of polymers produced in vivo.  相似文献   

3.
Dicarboxylic acid transport mutants of Rhizobium species are usually deficient in their ability to fix atmospheric dinitrogen. We report here a study comparing the physiology of root nodules on Phaseolus vulgaris L. cv. Goldie induced by an effective strain of Rhizobium leguminosarum biovar phaseoli and a C4-dicarboxylic acid utilization mutant. The mutant, while able to form nodules, was ineffective in N2 fixation. Carbohydrates and organic acids of roots and nodules formed by the 2 strains were monitored at 3-day intervals from 13 to 34 days after inoculation. Both carbohydrates and organic acids accumulated in ineffective nodules in comparison with the effective nodules. The concentration of malic acid was tenfold higher in ineffective nodules than in effective nodules. Other organic acids, i.e., lactate, malonate, ascorbate and gluconate, were also detected. Lactate and ascorbate were the only other organic acids accumulating in ineffective nodules. The most prevalent carbohydrates found in both types of nodules were sucrose, glucose and fructose. Myo-inositol was the only cyclitol detected in both types of nodules. Carbohydrates and organic acids were present in lower concentration in roots than in nodules, except for lactate. These compounds were not consistently detected in higher concentration in roots from plants inoculated with the mutant strain, as was the case in nodules.  相似文献   

4.
We disrupted the mpgS encoding mannosyl-3-phosphoglycerate synthase (MpgS) of Thermus thermophilus strains HB27 and RQ-1, by homologous recombination, to assess the role of the compatible solute mannosylglycerate (MG) in osmoadaptation of the mutants, to examine their ability to grow in NaCl-containing medium and to identify the intracellular organic solutes. Strain HB27 accumulated only MG when grown in defined medium containing 2% NaCl; mutant HB27M9 did not grow in the same medium containing more than 1% NaCl. When trehalose or MG was added, the mutant was able to grow up to 2% of NaCl and accumulated trehalose or MG, respectively, plus amino acids. T. thermophilus RQ-1 grew in medium containing up to 5% NaCl, accumulated trehalose and lower amounts of MG. Mutant RQ-1M1 lost the ability to grow in medium containing more than 3% NaCl and accumulated trehalose and moderate levels of amino acids. Exogenous MG did not improve the ability of the organism to grow above 3% NaCl, but caused a decrease in the levels of amino acids. Our results show that MG serves as a compatible solute primarily during osmoadaptation at low levels of NaCl while trehalose is primarily involved in osmoadaptation during growth at higher NaCl levels.  相似文献   

5.
6.
Screening of Rhizobium leguminosarum bv. phaseoli strains showed some that were able to nodulate common beans (Phaseolus vulgaris L.) at high temperatures (35 and 38°C/8 h/day). The nodulation ability was not related to the capability to grow or produce melanin-like pigment in culture media at high temperatures. However, nodules formed at high temperatures were ineffective and plants did not accumulate N in shoots. Two thermal shocks of 40°C/8 h/day at flowering time drastically decreased nitrogenase activity and nodule relative efficiency of plants otherwise grown at 28°C. Recovery of nitrogenase activity began only after seven days, when new nodules formed; total incorporation of N in tops did not recover for 2 weeks. Non-inoculated beans receiving mineral N were not affected by the thermal shock, and when growing continuously at 35 or 38°C had total N accumulated in shoots reduced by only 18%.  相似文献   

7.
Fourteen heat resistant mutant strains were isolated from a wild-type strain (PP201, Nod+ Fix+) of Rhizobium sp. (Cajanus) by giving it a heat shock of 43°C. These mutant strains showed a greater increase in optical density (O.D.) and a higher viable cell count in both rhizospheric and non-rhizospheric soil at high temperature. Symbiotic studies showed that pigeon pea plants inoculated with a few mutant strains had ineffective nodules (Nod+ Fix) under controlled temperature (43°C) conditions, but under natural high temperature (40–45°C) conditions, the host plants infected with all the mutant strains showed higher total shoot nitrogen than the plants inoculated with the parent strain. Four mutant strains (HR-3, HR-6, HR-10 and HR-12) were found to be highly efficient for all the symbiotic parameters, and thus have the potential to be used as bioinoculants in the North-Western regions of India during the summer season.  相似文献   

8.
9.
Non-motile mutants of Rhizobium trifolii defective in either flagellar synthesis or function were isolated by transposon Tn5 mutagenesis. they were indistinguishable from motile control strains in growth in both laboratory media and in the rhizosphere of clover roots. When each non-motile mutant was grown together with a motile strain in continuous culture, the numbers of motile and non-motile organisms remained in constant proportion, implying that their growth rates were essentially identical. When inoculated separately onto clover roots, the mutants and wildtype did not differ significantly in the number of nodules produced or in nitrogen fixing activity. However, when mixtures of equal numbers of mutant and wild-type cells were inoculated onto clover roots, the motile strain formed approximately five times more nodules than the flagellate or non-flagellate, non-motile mutants, suggesting that motility is a factor in competition for nodule formation.  相似文献   

10.
11.
We have been using sporogenous mutants of Dictyostelium discoideum strain V12M2 to study regulation of cell fate during terminal differentiation of spores and stalk cells. Analyses of intracellular cAMP accumulation, cAMP secretion, cAMP binding to cell surface receptors, and chemotactic sensitivity to exogenous cAMP during aggregation showed that all of these functions were identical in V12M2 and HB200, a sporogenous mutant. We used several methods of altering intracellular cAMP levels in HB200 cells to test the hypothesis that intracellular cAMP levels affect cell fate. First, HB200 amoebae were treated with 5 mM caffeine for 4 h during growth, washed, and allowed to develop in the absence of caffeine. Treated cells had normal levels of intracellular cAMP and adenylate cyclase activities at the beginning of differentiation; by 6 h development, they contained two to three times more intracellular cAMP and two times more GTP-dependent adenylate cyclase activity than untreated cells. However, their level of basal Mn++-dependent adenylate cyclase activity was the same as untreated controls. Thus, treatment of growing HB200 amoebae with caffeine for only 4 h leads to hyperinduction of a GTP-dependent regulator (or inhibition of a negative regulator) of adenylate cyclase during subsequent differentiation, without induction of basal activity. The fraction of amoebae forming spores increased twofold when HB200 amoebae were treated with caffeine during growth. Spore (but not stalk cell) differentiation by such treated cells was blocked by inhibitors of cAMP accumulation. Second, cells grown on nutrient agar accumulated higher levels of intracellular cAMP and formed more spores in vitro than cells grown in shaken suspension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.  相似文献   

14.
Summary Using a series of antibody probes as markers of symbiosome development, we have investigated the impaired development of symbiosomes in nodules formed by the plant mutant line Sprint2Fix (sym31). In wild-type pea (Pisum sativum L.) nodules, bacteria differentiate into large pleiomorphic, nitrogen-fixing bacteroids and are singly enclosed within a peribacteroid membrane. In thesym31 mutant, several small undifferentiated bacteroids were often enclosed within one peribacteroid membrane, or were found within a vacuole-like compartment. In wild-type nodules, the monoclonal antibody JIM18, which recognizes a plasmalemma glycolipid antigen, bound to the juvenile peribacteroid membrane, and did not recognize the mature peribacteroid membrane. However, in the mutant, the antibody bound to all peribacteroid membranes within the nodule, suggesting that differentiation of the peribacteroid membrane was arrested. Another antibody, MAC266, recognized plant glycoproteins which normally accumulate in symbiosomes at a late stage of nodule development. Binding of this antibody was much reduced within mutant nodules, labelling only a few mature cells. Similarly, MAC301, which normally recognizes a lipopolysaccharide epitope expressed on differentiated bacteroids prior to the induction of nitrogenase, failed to react with rhizobial cell extracts isolated from nodules of thesym31 mutant. On the basis of these developmental markers, the symbiosomes ofsym31 nodules appeared to be blocked at an early stage of development. The distribution of infection structures was also found to be abnormal in the mutant nodules. Models of symbiosome development are presented and discussed in relation to the morphological and developmental lesions observed in thesym31 mutant.  相似文献   

15.
To study the role of the decarboxylating leg of the bacterial TCA cycle in symbiotic nitrogen fixation, we used DNA shuffling and localized random polymerase chain reaction mutagenesis to construct a series of temperature-sensitive and impaired-function mutants in the Sinorhizobium meliloti Rm104A14 citrate synthase (gltA) gene. Reducing citrate synthase (CS) activity by mutation led to a corresponding decrease in the free-living growth rate; however, alfalfa plants formed fully effective nodules when infected with mutants having CS activities as low as 7% of the wild-type strain. Mutants with approximately 3% of normal CS activity formed nodules with lower nitrogenase activity and a mutant with less than 0.5% of normal CS activity formed Fix- nodules. Two temperature-sensitive (ts) mutants grew at a permissive temperature (25 degrees C) with 3% of wild-type CS activities but were unable to grow on minimal medium at 30 degrees C. Alfalfa plants that were inoculated with the ts mutants and grown with a root temperature of 20 degrees C formed functional nodules with nitrogenase activities approximately 20% of the wild type. When the roots of plants infected with the ts mutants were transferred to 30 degrees C, the nodules lost the ability to fix nitrogen over several days. Microscopic examination of these nodules revealed the loss of bacteroids and senescence, indicating that CS activity was essential for nodule maintenance.  相似文献   

16.
Rhizobium sp. wild-type strain GRH2 was originally isolated from root nodules of the leguminous tree Acacia cyanophylla and has a broad host range which includes herbaceous legumes, e.g., Trifolium spp. We examined the extracellular exopolysaccharides (EPSs) produced by strain GRH2 and found three independent glycosidic structures: a high-molecular-weight acidic heteropolysaccharide which is very similar to the acidic EPS produced by Rhizobium leguminosarum biovar trifolii ANU843, a low-molecular-weight native heterooligosaccharide resembling a dimer of the repeat unit of the high-molecular-weight EPS, and low-molecular-weight neutral beta (1,2)-glucans. A Tn5 insertion mutant derivative of GRH2 (exo-57) that fails to form acidic heteropolysaccharides was obtained. This Exo- mutant formed nitrogen-fixing nodules on Acacia plants but infected a smaller proportion of cells in the central zone of the nodules than did wild-type GRH2. In addition, the exo-57 mutant failed to nodulate several herbaceous legume hosts that are nodulated by wild-type strain GRH2.  相似文献   

17.
Cadmium accumulation and oxidative burst in garlic (Allium sativum)   总被引:13,自引:0,他引:13  
To investigate the temporal sequence of physiological reactions of garlic (Allium sativum) to cadmium (Cd) treatment, seedlings developed from cloves were grown in increasing concentrations of CdCl2, ranging from 1-10 mM, for up to 8 days in sand. Analysis of Cd uptake indicated that most Cd accumulated in roots, but some was also translocated and accumulated in leaves at longer exposure time (after 12h) and higher concentrations (5 and 10mM) of CdCl2. Changes in activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), were characterized in leaves of garlic seedlings. Cd (5 and 10 mM) initially inhibited the activities of SOD and CAT but thereafter recovered or even increased compared with control plants. POD activities at 5 and 10 mM of Cd increased more than 3-4 times over control plants within 12 h and then dropped, but were still higher than controls at the end of the experiment. Otherwise lipid peroxidation enhanced with the increasing of incubation time and concentrations of external Cd. Leaves exposed to 1 mM CdCl2 showed a less pronounced response and only a small reduction in shoot growth. These results suggested that in leaves of garlic seedlings challenged by CdCl2 at higher concentrations, induction of these various enzymes is part of a general defense strategy to cope with overproduction of reactive oxygen. The possible mechanism of antioxidative enzymes changing before Cd accumulation in leaves of garlic seedlings is discussed.  相似文献   

18.
We expressed two green fluorescent protein (GFP)-tagged Nopp140 isoforms in transgenic Drosophila melanogaster to study nucleolar dynamics during oogenesis and early embryogenesis. Specifically, we wanted to test whether the quiescent oocyte nucleus stored maternal Nopp140 and then to determine precisely when nucleoli formed during embryogenesis. During oogenesis nurse cell nucleoli accumulated GFP-Nopp140 gradually such that posterior nurse cell nucleoli in egg chambers at stage 10 were usually brighter than the more anterior nurse cell nucleoli. Nucleoli within apoptotic nurse cells disassembled in stages 12 and 13, but not all GFP-Nopp140 entered the oocyte through inter-connecting cytoplasmic bridges. Oocytes, on the other hand, lost their nucleoli by stage 3, but GFP-Nopp140 gradually accumulated in oocyte nuclei during stages 8–13. Most oocyte nuclei at stage 10 stored GFP-Nopp140 uniformly, but many stage 10 oocytes accumulated GFP-Nopp140 in presumed endobodies or in multiple smaller spheres. All oocyte nuclei at stages 11-12 were uniformly labeled, and GFP-Nopp140 diffused to the cytoplasm upon nuclear disassembly in stage 13. GFP-Nopp140 reappeared during embryogenesis; initial nucleologenesis occurred in peripheral somatic nuclei during embryonic stage 13, one stage earlier than reported previously. These GFP-Nopp140-containing foci disassembled at the 13th syncytial mitosis, and a second nucleologenesis occurred in early stage 14. The resulting nucleoli occupied nuclear regions closest to the periphery of the embryos. Pole cells contained GFP-Nopp140 during the syncytial embryonic stages, but their nucleologenesis started at gastrulation. This work was supported by the National Science Foundation (grant MCB-0234245). O'Keith Dellafosse was supported by the Louisiana Alliance for Minority Participation (LAMP).  相似文献   

19.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. NADP(+)-dependent isocitrate dehydrogenase (ICDH) in Escherichia coli produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against heat shock in E. coli was investigated in wild-type and ICDH-deficient strains. Upon exposure to heat shock, the viability was lower and the protein oxidation was higher in mutant cells as compared to wild-type cells. Induction and inactivation of antioxidant enzymes were observed after their exposure to heat shock both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against heat shock through the removal of reactive oxygen species as well as in the protection of other antioxidant enzymes.  相似文献   

20.
Summary Eight ineffective mutant strains were isolated from N-methyl-N'-nitro-N-nitrosoguanidine mutagenized cultures of cowpea Rhizobium strain 32H1. Strains CR1, CR2, CR3, CR4, CR5 and CR6 induced more, but smaller, nodules than the wild type. With the exception of strain CR2, these mutant strains reduced less than 1% of the amount of acetylene reduced by the wild type, in both the free-living and symbiotic assays. Strain CR2 reduced acetylene in the free-living assay but not in the symbiotic assay. Strains CR7 and CR8 responded variably (5–20% of the wild type) in free-living and symbiotic acetylene reduction assays. Nodules also varied from small white to normal-sized pink nodules. The phenotypic characteristics of the mutant strains were consistant with all leguminous plants tested and were stable upon reisolation from nodules. Fully effective revertants were selected from 4 of the ineffective mutant strains by the use of the leguminous plant,Macroptilium lathyroides. Serology, patterns of resistance to anti-bacterial agents, phage-typing, and antibiotic resistance markers were used to confirm strain identification.Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service and the North Carolina Agricultural Research Service, Raleigh, North Carolina. Paper no. 8834 of the Journal Series of the North Carolina Agricultural Research Service at Raleigh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号