首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
Stem cell factor (SCF) was documented to be involved in the growth of mast cells controlled by fibroblasts. We tested the effect of recombinant rat SCF on degranulation from rat peritoneal mast cells (connective tissue-type mast cells: CTMC). SCF induced histamine release (approximately 20% of total histamine content) in a dose-dependent fashion. The release response was relatively rapid and reached a maximum within 5 min. The release showed total dependence on the presence of extracellular phosphatidylserine (PTS). These results reveal that SCF has histamine releasing activity in CTMC.  相似文献   

2.
A technique is described for obtaining isolated mast cells from guinea-pig mesentery by an enzymatic digestion process using hyaluronidase and collagenase. One to 4 × 106 mast cells were obtained from the mesentery of each animal. Isolated mast cells from guinea-pigs of about 400 g were approximately spherical with a mean diameter of 6.1 μm and a mean histamine content of 8.8 pg. Studies on isolated mast cells from sensitised animals showed that the cells were still capable of an anaphylactic release of histamine when challenged with the appropriate antigen. Isolated mast cells did not sensitise when incubated with antibody dissolved in physiological saline but sometimes became weakly sensitised when incubated with the same antibody in isotonic-buffered glucose. Mast cells were found to survive in culture but they were no longer capable of an antigen-induced histamine release.  相似文献   

3.
Glucocorticoids are steroids endowed with powerful anti-inflammatory properties, which are routinely believed to require several hours to take effect through modulation of gene expression. Our recent report has shown that glucocorticoids could inhibit allergic reaction within 10 minutes, which the classical genomic mechanism could not explain. Histamine is thought to be one of major mediators in the allergic reaction, and IgE-mediated histamine release from mast cells plays a pivotal role in allergic diseases. Here, we have determined a rapid effect of corticosterone on histamine release from rat peritoneal mast cells, using fluorometric assay. The results showed that corticosterone could inhibit antigen-induced histamine release from rat peritoneal cells within 15 minutes (p<0.05), which could be mimicked by membrane-impermeable BSA conjugated corticosterone (p<0.05). Neither glucocorticoid nuclear receptor antagonist nor protein synthesis inhibitor could block the rapid action (p<0.05). The study provided evidence that nongenomic mechanism might be involved in rapid effect of glucocorticoids on mast cells in allergic disease.  相似文献   

4.
Carnosine (beta-alanyl-histidine) is a naturally occurring dipeptide that has been characterized as a putative hydrophilic antioxidant. The protective function of carnosine has been demonstrated in neuronal cells under ischemic injury. The purpose of this study was to investigate the effects of carnosine on oxygen-glucose deprivation (OGD)-induced degranulation and histamine release from mast cells. Cultured mast cells were exposed to OGD for 4 h, and then the degranulation was observed immediately by microscopy. Histamine release was analyzed by high-performance liquid chromatography (HPLC). OGD caused degranulation of mast cells, and increased histamine and lactate dehydrogenase (LDH) release. Carnosine (at a concentration of 5 mM) alone did not produce any appreciable effect on degranulation, histamine, and LDH release from mast cells under normal condition, but significantly inhibited the degranulation, histamine, and LDH release of mast cells induced by OGD. These results indicate that carnosine can protect mast cells from degranulation and histamine release and it may be an endogenous mast cell stabilizer in the pathological processes induced by ischemia.  相似文献   

5.
Bronchoalveolar lavage performed in 10 patients with extrinsic asthma and 14 controls yielded similar recoveries of fluid and cells. Mast cells and eosinophils, however, formed a greater proportion of the cells recovered from the asthmatic subjects (p less than 0.001 for mast cells; p less than 0.01 for eosinophils), the histamine content of the lavage cells being correspondingly increased (p less than 0.01). Both the percentage of mast cells and the histamine content of lavage cells were significantly inversely correlated with the forced expiratory volume in one second (FEV1; expressed as percentage of predicted) and with the ratio of FEV1 to forced vital capacity before lavage. There was also a significant inverse correlation between the concentration of histamine required to produce a 20% fall in FEV1 and the percentage of mast cells recovered (p less than 0.05). When incubated with antihuman IgE bronchoalveolar mast cells from asthmatic subjects released a significantly increased proportion of total cellular histamine than cells from control subjects at all effective doses of anti-IgE. By contrast, dose response curves for IgE dependent histamine release from peripheral blood leucocytes were similar in asthmatics and controls. Specific antigen led to release of histamine from bronchoalveolar cells and peripheral blood leucocytes of asthmatic subjects but not controls. Lying superficially within the airways, bronchoalveolar mast cells would be readily exposed to inhaled antigen and would release mediators directly on to the airway surface. Their immunological response suggests that they are likely to be important in the pathogenesis of airflow obstruction in asthma.  相似文献   

6.
Chai OH  Kim EK  Lee YH  Kim JG  Baik BJ  Lee MS  Han EH  Kim HT  Song CH 《Peptides》2001,22(9):1421-1426
Dendroaspis natriuretic peptide (DNP), recently isolated from the venom of the green Mamba snake Dendroaspis angusticeps, is a 38 amino acid peptide containing a 17 amino acid disulfide ring structure similar to that of the natriuretic peptide family. The natriuretic peptide family is known to induce histamine release from human and rat mast cells, but there are no published data concerning the effects of DNP on histamine release from mast cells. The purpose of this study is to investigate whether DNP induces the histamine release from rat peritoneal mast cells (RMPCs) and to determine the mechanism of DNP-induced histamine release from RPMCs. After treatment of RPMC with DNP, mast cell degranulation was observed, and calcium uptake and histamine release were measured. DNP released the histamine, induced the mast cell degranulation, and increased the calcium uptake of RPMCs, in a dose-dependent manner. The results indicate that DNP can increase Ca-uptake and induce histamine release.  相似文献   

7.
Digestion of human foreskin with collagenase and hyaluronidase disperses approximately 3.4 X 10(7) nucleated cells per gram of tissue, of which mast cells constitute 4.7%. These may be purified to 80% by use of density gradient centrifugation. The majority of mast cells (79%) measured between 9 and 13 micron in diameter, and the mean histamine content was 4.6 pg/cell. Viability was demonstrated by trypan blue exclusion by 93% of the cells and the low spontaneous histamine secretion of less than 7% in functional studies. Anti-IgE released up to 17.5% of cell-associated histamine within 5 to 7 min. Calcium ionophore-induced release was optimal with 0.3 microM A23187 when 28.6% histamine was released. Unlike human lung mast cells, skin mast cells released histamine in response to compound 48/80 and poly-L-lysine. This release, which was complete within 20 sec, was totally dependent on intact glycolysis and oxidative phosphorylation and partially dependent on extracellular calcium. The same characteristics were observed with secretion induced by substance P and morphine. The weak activity of eledoisin and physalaemin suggests that the substance P receptor, like that of the rat mast cell, is not of the classical types described for smooth muscle. Morphine-induced secretion was partially blocked by naloxone in a manner not compatible with competitive antagonism at a classical opioid receptor. The sensitivity of skin mast cells to nonimmunologic stimulation clearly distinguishes them from mast cells of the lung and lymphoid tissues and provides evidence of functional heterogeneity within human mast cells.  相似文献   

8.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events folowing exocytosis, activate glycolysis.  相似文献   

9.
We have examined the effects of FK-506 and of the struturally related macrolide rapamycin, which bind with high affinity to a specific binding protein (FKBP), to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized inflammatory mediators (sulfidopeptide leukotriene C4 and prostaglandin D2) from mast cells isolated from human lung parenchyma. FK-506 (0.1 to 300 nM) concentration dependently inhibited histamine release from lung parenchymal mast cells activated by anti-IgE. FK-506 was more potent in lung mast cells than in basophils (IC50 = 1.13 +/- 0.46 nM vs 5.28 +/- 0.88 nM; p less than 0.001), whereas the maximal inhibitory effect was higher in basophils than in lung mast cells (88.4 +/- 2.5% vs 76.4 +/- 3.8%; p less than 0.01). FK-506 had little or no inhibitory effect on histamine release from lung mast cells challenged with compound A23187, whereas it completely suppressed A23187-induced histamine release from basophils. FK-506 also inhibited the de novo synthesis of 5-lipoxygenase (sulfidopeptide leukotriene C4) and cyclo-oxygenase (prostaglandin D2) metabolites of arachidonic acid from mast cells challenged with anti-IgE. Unlike in basophils, Il-3 (3 to 30 ng/ml) did not modify anti-IgE- or A23187-induced histamine release from lung mast cells nor did it reverse the inhibitory effect of FK-506. Rapamycin (3 to 300 nM) had little or no effect on the release of histamine from lung mast cells, but it was a competitive antagonist of the inhibitory effect of FK-506 on anti-IgE-induced histamine release from human mast cells with a dissociation constant of about 12 nM. These data indicate that FK-506 is a potent anti-inflammatory agent that acts on human lung mast cells presumably by binding to a receptor site (i.e., FKBP).  相似文献   

10.
Concanavalin A- (con A) induced release of histamine from normal rat mast cells was studied. In the presence of phosphatidylserine (PS) con A induced a concentration and temperature-dependent, noncytotoxic histamine release at con A concentrations ranging from 0.1 to 100 mug/ml. The optimal con A concentration, 100 mug/ml, caused a 27.3% (+/- 2.7 S.E.M.) net histamine release. Release began approximately 30 sec after addition of con A and was complete within 45 min. In the absence of PS, no net con A-induced release occurred. The effect of PS was concentration dependent from 1 to 100 mgg/ml. PS alone, however, did not cause histamine release. Binding studies indicated that mast cells bound up to 16 X 10(6) con A molecules per cell without histamine release. Upon removal of unbound con A and the addition of PS, normal histamine release occurred. Alpha-Methyl-D-mannose (50 mM) prevented both con A binding and histamine release and if added after Con A, caused a rapid cessation of histamine release and a reversal of con A binding. This study indicates several important advantages of the con A-induced histamine release system. Binding of con A to mast cells can be dissociated from histamine release by omitting PS from the medium. Release can then be induced by the addition of PS. Alpha-Methyl-D-mannose can be used to terminate rapidly the ongoing release reaction at any phase of the interaction. This system is potentially very useful for investigation of metabolic events during histamine release.  相似文献   

11.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events following exocytosis, activate glycolysis.  相似文献   

12.
The cultured mouse mast cells that are dependent on spleen-derived factor for their proliferation and maintenance and have been shown to be similar to mucosal mast cells in terms of their T-cell dependence and histochemical staining characteristics. Mast cell heterogeneity has been confirmed by functional characterization of mouse bone marrow-derived mast cells (MBMMC) and mouse peritoneal mast cells (MPMCs). MPMCs released around 30% of histamine when stimulated with compound 48/80 whereas MBMMC were almost unresponsive to the same stimulus. Calcium Ionophore A23187 on the other hand, released histamine in dose-dependent manner from MBMMC. The study was undertaken to investigate the effect of antiallergic drug, disodium cromoglycate (DSCG), a synthetic cromone and quercetin, a plant-derived flavonoid on Ca ionophore A23187 induced histamine release from MBMMC. MBMMCs were almost unresponsive to DSCG whereas Ca Ionophore induced histamine release was blocked by Quercetin. The results indicate that response of mast cells at one anatomic site to a given stimulus does not necessarily predict the response of mast cells at a different anatomic location to the same stimulus. It shows functional heterogeneity within a single species. So, it cannot be assumed that antiallergic compounds stabilizing mast cells in one tissue site or organ will be equally efficacious against mast cells in other sites.  相似文献   

13.
L-Leucine methyl ester (Leu-OMe), a lysosomotropic compound, has been found to eliminate several lysosome-rich cellular subtypes and all natural killer cell function from peripheral blood mononuclear cells. In this report, the effect of Leu-OMe on mouse peritoneal mast cells is described. The L-Leu-OMe induced the release of histamine from mouse peritoneal mast cells in a dose-dependent manner (0.25 to 3 mM), while its D-stereoisomer had no effect. L-Leu-OMe displayed also a potent histamine release effect on purified mast cells, indicating a direct effect on mast cells. The monitoring of radioactive chromium release versus histamine release showed that both processes may be unrelated for Leu-OMe concentrations inferior to 1.5 mM. At higher doses, L-Leu-OMe, but not its D-stereoisomer, exerted a potent cytotoxic effect on mast cells. The secretory effect of Leu-OMe was temperature- and energy-dependent. Experiments performed in the absence of extracellular calcium and magnesium demonstrated that these divalent cations were not necessary for the Leu-OMe-induced histamine release, and their deprivation even involved a higher histamine release. The secretory characteristics of the Leu-OMe-induced histamine release appeared to be different from those of the IgE-induced ones. These results support the conclusion that exposure of mouse peritoneal mast cells to high doses of L-Leu-OMe results in killing of these cells, that are new targets of this lysosomotropic agent.  相似文献   

14.
The adenosine triphosphate (ATP) content of rat mast cells was studied during and after histamine release induced by compound 48/80. The almost identical time course of ATP decrease from mast cells treated with either glycolytic or respiratory inhibitors seems to indicate that the ATP depletion was largely related to the histamine release process and not to an uncoupling of the oxidative phosphorylation. These results support the view that histamine release induced by compound 48/80 is an energy-requiring process. The ATP content of the cells was not, however, restored within the two hours of observation. The cause of the prolonged decrease in the ATP level has been discussed.  相似文献   

15.
16.
A series of block co-polymers composed of polyoxyethylene and polyoxypropylene were investigated for their ability to induce in vitro activation of mouse mast cells. We found that six of these co-polymers could cause histamine release from mouse mast cells in vitro. At low concentrations, the most efficacious co-polymer, T130R2, caused rapid and extensive concentration-dependent release of histamine from mouse mast cells. The release process was not cytotoxic; it required metabolic energy and was not accompanied by release of lactate dehydrogenase. Optimal release of histamine was dependent on both calcium and sodium ions in the extracellular medium. The degree of in vitro histamine release correlated with in vivo inflammation and in vitro ionophore activity. We believe that this represents the first report of the activation of mediator-containing cells by an ionophore selective for monovalent cations. These copolymers may therefore represent new reagents for investigations of cellular excitation.  相似文献   

17.
NCDC dose-dependently inhibited histamine release from rat peritoneal mast cells induced by anti-IgE. Moreover, NCDC inhibited Ca(2+)-mobilization from intracellular Ca(2+)-stores as well as histamine release in mast cells activated by anti IgE, the effect on both of these phenomena being closely correlated. Anti-IgE induced a rapid increase in IP3 production from phosphoinositides in mast cells, with its production in 15 sec, followed to baseline levels within 1 min. Anti-IgE stimulated PLC activity on mast cells membrane preparation. NCDC dose-dependently inhibited the generation of IP3. These results suggest that the inhibitory effect of NCDC on the release of histamine induced by anti-IgE is due to, in part at least, the inhibition of PI-specific PLC and that the inhibitory effects of NCDC are involved in intracellular calcium store.  相似文献   

18.
We previously reported that A23187 induces release of histamine from bovine intrapulmonary vein and provided pharmacological evidence against an involvement of mast cells as the source of histamine. This study was conducted to test more definitively the hypothesis that histamine is released from non-mast cell sources in blood vessels. The effects of A23187 on release of histamine were determined using rat aorta which does not contain mast cells. Aortic rings were mounted for recording of isometric tension, and following exposure to A23187 or vehicle, histamine in the bathing media was measured using enzyme immunoassay. A23187 (100 nmol/l - 10 micromol/l) induced concentration-related release of histamine from rings with endothelium. The accumulation of histamine in the bathing media induced by 10 microM A23187 reached plateau at 60 min (6.2 +/- 1.1 pmol/mg) and was markedly and significantly higher than vehicle control (0.4 +/- 0.1 pmol/mg, p < 0.05). Destruction of endothelium significantly inhibited A23187-induced histamine release (5.5 +/- 1.5 pmol/mg with endothelium, 1.1 +/- 0.3 pmol/mg without endothelium, p < 0.05). The results demonstrate that A23187 induces release of histamine from rat aorta which does not contain mast cells and that the release of histamine is largely dependent on the presence of endothelium.  相似文献   

19.
IgE-dependent histamine release from rat mesenteric mast cells was investigated. Excised mesenterium was cut into pieces and incubated with IgE overnight at 4 degrees C for sensitization. Over 10 pieces of mesenterium specimen could be prepared from a rat. Antigen-induced histamine release from mesenterium specimen was initiated rapidly and reached a plateau in 5 min. In an optimal condition, over 50% of total histamine was released. In contrast, unpurified and purified peritoneal mast cells released only 22.5% and 5.3% of total histamine, respectively, upon IgE stimulation. Tranilast, a mast cell stabilizer, inhibited the histamine release from mesenteric mast cells significantly. The mesenterium might be useful material for studying tissue-associated mast cell activation.  相似文献   

20.
Stimulation of normal rat splenic T cells with pertussigen (lymphocytosis-promoting factor from Bordetella pertussis) resulted in the release of a soluble factor that enhanced the assembly of N-linked oligosaccharides to IgE-binding factors during their biosynthesis. The glycosylation-enhancing factor (GEF) is a kallikrein-like enzyme and is purified by absorption to p-aminobenzamidine-Agarose followed by elution with benzamidine. Incubation of normal mouse mast cells with affinity-purified GEF or bradykinin, a product of cleavage of kininogen by kallikrein, resulted in the release of histamine and arachidonate from the cells. Passive sensitization of mast cells with mouse IgE antibody, followed by pretreatment of the cells with a suboptimal concentration of GEF, resulted in an enhancement of antigen-induced histamine release. It was found that GEF and bradykinin induced the same biochemical events in mast cells as those induced by bridging of IgE receptors. Both GEF and bradykinin induced phospholipid methylation and an increase in intracellular cyclic AMP (cAMP). Incorporation of 3H-methyl groups into phospholipids and intracellular cAMP levels both reached a maximum 30 sec after challenge with GEF or bradykinin, and then declined to base-line levels within 2 to 3 min. These biochemical events were followed by 45Ca influx and histamine release; 45Ca uptake reached a plateau value at 2 min, and histamine release reached a maximum at 5 to 8 min. The initial rise in cAMP induced by GEF (or bradykinin) was not inhibited by indomethacin, indicating that the activation of adenylate cyclase is not the result of prostaglandin synthesis. In both IgE-mediated and GEF-induced histamine release, inhibitors of methyltransferases, such as 3-deaza adenosine and L-homocysteine thiolactone, inhibited not only phospholipid methylation but also the cAMP rise and subsequent Ca2+ uptake and histamine release. The results indicate that GEF induces activation of methyltransferases and that phospholipid methylation is involved in the cAMP rise, Ca2+ uptake, and histamine release. The induction of the same biochemical events in the same sequence by bridging of IgE receptors and by GEF (bradykinin) supports the hypothesis that receptor bridging induces the activation of serine protease(s) and cleavage products of this enzyme in turn activate methyltransferases in mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号