首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of fungi in dermatological samples using PCR is reliable and provides significantly improved results in comparison with cultures. It is possible to identify the infectious agent when negative results are obtained from cultures. In addition, identification of the infectious agent can be obtained in 1 day. Conventional and real-time PCR methods used for direct fungus identification in collected samples vary by DNA extraction methods, targeted DNA and primers, and the way of analysing the PCR products. The choice of a unique method in a laboratory is complicated because the results expected from skin and hair sample analysis are different from those expected in cases of onychomycosis. In skin and hair samples, one dermatophyte among about a dozen possible species has to be identified. In onychomycosis, the infectious agents are mainly Trichophyton rubrum and, to a lesser extent, Trichophyton interdigitale, but also moulds insensitive to oral treatments used for dermatophytes, which renders fungal identification mandatory. The benefits obtained with the use of PCR methods for routine analysis of dermatological samples have to be put in balance with the relative importance of getting a result in a short time, the price of molecular biology reagents and equipment, and especially the time spent conducting laboratory manipulations.  相似文献   

2.
Applications of reliable DNA extraction and amplification techniques to postmortem samples are critical to ancient DNA research. Commonly used methods for isolating DNA from ancient material were tested and compared using both soft tissue and bones from fossil and contemporary museum proboscideans. DNAs isolated using three principal methods served as templates in subsequent PCR amplifications, and the PCR products were directly sequenced. Authentication of the ancient origin of obtained nucleotide sequences was established by demonstrating reproducibility under a blind testing system and by phylogenetic analysis. Our results indicate that ancient samples may respond differently to extraction buffers or purification procedures, and no single method was universally successful. A CTAB buffer method, modified from plant DNA extraction protocols, was found to have the highest success rate. Nested PCR was shown to be a reliable approach to amplify ancient DNA templates that failed in primary amplification.  相似文献   

3.
Molecular methods are increasingly being used in the study of harmful microalgae; however, DNA extraction techniques have imposed limitations on the species and questions studied, with research primarily restricted to cultured specimens. Here we describe a simple method that merges two existing techniques for DNA extraction from live and preserved single dinoflagellate cells. DNA was successfully isolated from live single cells of Gambierdiscus toxicus Adachi et Fukuyo, 1979 and cells preserved using formalin/methanol fixation. This method supplements existing techniques and expands the scope of genetics studies conducted on dinoflagellates to include routine molecular analysis of single cells isolated from field samples.  相似文献   

4.
The purity of DNA extracted from faecal samples is a key issue in the sensitivity and usefulness of biological analyses such as PCR for infectious pathogens and non-pathogens. We have compared the relative efficacy of extraction of bacterial DNA (both Gram negative and positive origin) from faeces using four commercial kits (FastDNA kit, Bio 101; Nucleospin C+T kit, Macherey-Nagal; Quantum Prep Aquapure Genomic DNA isolation kit, Bio-Rad; QIAamp DNA stool mini kit, Qiagen) and a non-commercial guanidium isothiocyanate/silica matrix method. Human faecal samples were spiked with additional known concentrations of Lactobacillus acidophilus or Bacteroides uniformis, the DNA was then extracted by each of the five methods, and tested in genus-specific PCRs. The Nucleospin method was the most sensitive procedure for the extraction of DNA from a pure bacterial culture of Gram-positive L. acidophilus (10(4) bacteria/PCR), and QIAamp and the guanidium method were most sensitive for cultures of Gram-negative B. uniformis (10(3) bacteria/PCR). However, for faecal samples, the QIAamp kit was the most effective extraction method and led to the detection of bacterial DNA over the greatest range of spike concentrations for both B. uniformis and L. acidophilus in primary PCR reactions. A difference in extraction efficacy was observed between faecal samples from different individuals. The use of appropriate DNA extraction kits or methods is critical for successful and valid PCR studies on clinical, experimental or environmental samples and we recommend that DNA extraction techniques are carefully selected with particular regard to the specimen type.  相似文献   

5.
The ubiquity, high diversity and often‐cryptic manifestations of fungi and oomycetes frequently necessitate molecular tools for detecting and identifying them in the environment. In applications including DNA barcoding, pathogen detection from plant samples, and genotyping for population genetics and epidemiology, rapid and dependable DNA extraction methods scalable from one to hundreds of samples are desirable. We evaluated several rapid extraction methods (NaOH, Rapid one‐step extraction (ROSE), Chelex 100, proteinase K) for their ability to obtain DNA of quantity and quality suitable for the following applications: PCR amplification of the multicopy barcoding locus ITS1/5.8S/ITS2 from various fungal cultures and sporocarps; single‐copy microsatellite amplification from cultures of the phytopathogenic oomycete Phytophthora ramorum; probe‐based P. ramorum detection from leaves. Several methods were effective for most of the applications, with NaOH extraction favored in terms of success rate, cost, speed and simplicity. Frozen dilutions of ROSE and NaOH extracts maintained PCR viability for over 32 months. DNA from rapid extractions performed poorly compared to CTAB/phenol‐chloroform extracts for TaqMan diagnostics from tanoak leaves, suggesting that incomplete removal of PCR inhibitors is an issue for sensitive diagnostic procedures, especially from plants with recalcitrant leaf chemistry. NaOH extracts exhibited lower yield and size than CTAB/phenol‐chloroform extracts; however, NaOH extraction facilitated obtaining clean sequence data from sporocarps contaminated by other fungi, perhaps due to dilution resulting from low DNA yield. We conclude that conventional extractions are often unnecessary for routine DNA sequencing or genotyping of fungi and oomycetes, and recommend simpler strategies where source materials and intended applications warrant such use.  相似文献   

6.
Cultured strains and individually isolated dinoflagellate cells from field samples were preserved in different fixatives to find a method of cell preservation that could provide DNA template in PCR reactions and preserve cell morphology for microscopic studies. Lugol’s solution and various ethanol concentrations all showed shortcomings, whereas an initial formalin preservation step followed by storage in 100% methanol fulfilled both demands. Cells could be stored up to 1 year and still provide functional DNA template for positive PCR reactions. The amplified fragment was approximately 700 bp of the D1/D2 region of the LSU rDNA, which is to our knowledge significantly longer than the low-molecular-weight DNA typically reported from formalin preserved samples. By cloning and sequencing the PCR product and subsequently aligning the sequences with previously sequenced fragments of the same or similar species, we confirmed that no base pair alteration had taken place during the time that the cells were fixed and frozen. In another experiment it was demonstrated that the growth phase of cultured Alexandrium minutum did not have any influence on the result of PCR reactions. This was true for extracted DNA from cultures and for direct PCR with a small number of disrupted cells. Phenol/chlorophorm/isoamylalcohol extraction proved to be an unpredictable method for DNA extraction, whereas direct PCR on isolated cells was more reliable. Extracted DNA purified with a commercial DNA cleaning kit always rendered a positive PCR. The environmental condition for cells to be used as DNA template in PCR is discussed.  相似文献   

7.
Extraction of high-quality DNA is a key step in PCR detection of Cryptosporidium and other pathogens in environmental samples. Currently, Cryptosporidium oocysts in water samples have to be purified from water concentrates before DNA is extracted. This study compared the effectiveness of six DNA extraction methods (DNA extraction with the QIAamp DNA minikit after oocyst purification with immunomagnetic separation and direct DNA extraction methods using the FastDNA SPIN kit for soil, QIAamp DNA stool minikit, UltraClean soil kit, or QIAamp DNA minikit and the traditional phenol-chloroform technique) for the detection of Cryptosporidium with oocyst-seeded samples, DNA-spiked samples, and field water samples. The study also evaluated the effects of different PCR facilitators (nonacetylated bovine serum albumin, the T4 gene 32 protein, and polyvinylpyrrolidone) and treatments (the use of GeneReleaser or ultrafiltration) for the relief from or removal of inhibitors of PCR amplification. The results of seeding and spiking studies showed that PCR inhibitors were presented in all DNA solutions extracted by the six methods. However, the effect of PCR inhibitors could be relieved significantly by the addition of 400 ng of bovine serum albumin/μl or 25 ng of T4 gene 32 protein/μl to the PCR mixture. With the inclusion of bovine serum albumin in the PCR mixture, DNA extracted with the FastDNA SPIN kit for soil without oocyst isolation resulted in PCR performance similar to that produced by the QIAamp DNA minikit after oocysts were purified by immunomagnetic separation.  相似文献   

8.
Genomic DNA was extracted from 13 samples of Sargassum polycystum and S. siliquosum collected from various localities around Peninsular Malaysia and Singapore by using four different extraction methods. The yields and the suitability of the DNA to be used as template for the polymerase chain reaction (PCR) was compared. DNA samples were subjected to PCR analysis by using random primers. Only DNA samples that were extracted using the CTAB method were successfully amplified by random amplified polymorphic DNA (RAPD)-PCR. Five of 31 random primers (OPA02, OPA03, OPA04, OPA13 and OPM10) tested amplified sequences of DNA from the DNA samples. Reproducible, amplified products were obtained using these primers and showed some potential to be useful in discriminating individual samples within the genus, in determining relationships between species within a genus and in developing individual fingerprints for individual samples.  相似文献   

9.
Heterosigma akashiwo (Hada) gives rise to red tides along the Atlantic and Pacific coasts and is known to produce brevetoxins. This investigation establishes baseline information showing the presence of H. akashiwo along the central California coast based on water samples collected from the Santa Cruz pier in Monterey Bay (on the open coast) and the Berkeley pier in San Francisco Bay. Light and electron microscopy as well as two species-specific DNA probe methods based on cell homogenates preparations were employed to detect H. akashiwo during the 2001–2002 field study. The DNA probe methods consisted of a sandwich hybridization assay (SHA), which targets ribosomal RNA (rRNA), and an end-point polymerase chain reaction (PCR) assay, which targets internal transcribed spacer (ITS) sequences of rRNA genes. The SHA was used to provide semi-quantitative data showing the intermittent presence of the species during a 13-month period in Monterey Bay. Samples that showed a variety of responses in the SHA (negative as well as the highest) were then subjected to the PCR assay in an attempt to confirm species identification using an independent DNA probe method that employs cell homogenates; samples included those from Monterey Bay and one from a red tide event in San Francisco Bay. SHA and PCR assays agreed on the presence or absence of H. akashiwo. Gene products from two field samples positive for H. akashiwo by PCR were cloned and sequenced and found to be identical to those of that species in GenBank. When the same samples were viewed by light microscopy, however, H. akashiwo cells were only seen in the sample with the highest abundance of that species, as evidenced by SHA. It was extremely difficult to recognize naturally occurring H. akashiwo using light microscopy in field samples that had been preserved with Lugol's iodine, including samples that gave positive results by cell homogenate methods. Results of this study indicate that H. akashiwo is present along the open California coast and could easily be missed in routine phytoplankton surveys. Despite its presence, H. akashiwo does not appear to routinely bloom with sufficient densities to cause harmful outbreaks of the frequency and severity documented in some other coastal environments. Molecular identification techniques may be the preferred approach over light microscopy when there is a need to rapidly screen many samples for fragile, harmful species and those that are otherwise problematic to identify based on their gross morphology alone.  相似文献   

10.
Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE) material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany) seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3–24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can be used for downstream applications like massively parallel sequencing.  相似文献   

11.
We applied human forensic techniques to the extraction of whole genomic DNA from processed wood samples to explore the possibility of identifying an endangered tropical timber species by using DNA sequencing technology. High-yield and high-quality DNA samples were obtained from 2 commercial wood and 3 herbarium samples. Large PCR fragments ranging from 500–800 bp were successfully amplified from 2 chloroplast and 1 mitochondrial regions in all 5 samples, indicating limited degradation of the cytoplasmic genomes. DNA extraction from stem wood taken from herbarium specimens appeared superior to that from stem wood with bark intact or from leaf samples. DNA sequences from thetrn regions allowed for easy identification of the focal species based on GenBank Blast search. Little sequence variation was observed in the 3 regions, with the mitochondrialcox3 region completely conserved. Extraction of high-quality and large intact DNA fragments makes dry wood materials amenable to various DNA marker-based applications, including fingerprinting and historical approaches. By sampling stemwood, the wealth of historical information housed in international herbaria can be explored with minimal damage to taxonomically important features.  相似文献   

12.
Mycobacterium avium subsp. paratuberculosis (MAP) can cause a very serious, often-fatal disease, namely paratuberculosis, in several animal species, especially ruminants. Recently, it has also been implicated in the pathogenesis of Infectious Bowel Disease of man. The aim of this study was to develop a molecular method for the routine detection and identification of MAP, from tissue samples of animal origin. The proposed assay would have to combine optimum performance and cost, with high reproducibility. To this goal, three laboratories in Greece and the Czech Republic undertook different parts of a study that involved evaluation of DNA extraction procedures, and PCR assays, for MAP detection. For DNA extraction we used one in-house, and one commercial method, and for the PCR we assessed a number of different assays, starting with the evaluation of primer specificity with an extended GenBank database search. Based on these results, we chose to assess a one-tube nested, 2 two-tube nested, and a single PCR assay, targeted to different genomic regions of the IS900 element. These four methods were applied on positive and negative control samples, consisted of pure bacterial cultures and formalin-fixed paraffin-embedded (FFPE) tissue samples collected from cattle with paratuberculosis and chickens with M. avium subsp. avium infection. Based on the criteria of reliability and cost, the procedure that performed better was the one-tube nested PCR assay combined with the in-house DNA extraction method. The agreement of the results obtained by the three collaborating laboratories indicates the reliability of the proposed assay even under different laboratory conditions.  相似文献   

13.
Extraction of high-quality DNA is a key step in PCR detection of Cryptosporidium and other pathogens in environmental samples. Currently, Cryptosporidium oocysts in water samples have to be purified from water concentrates before DNA is extracted. This study compared the effectiveness of six DNA extraction methods (DNA extraction with the QIAamp DNA minikit after oocyst purification with immunomagnetic separation and direct DNA extraction methods using the FastDNA SPIN kit for soil, QIAamp DNA stool minikit, UltraClean soil kit, or QIAamp DNA minikit and the traditional phenol-chloroform technique) for the detection of Cryptosporidium with oocyst-seeded samples, DNA-spiked samples, and field water samples. The study also evaluated the effects of different PCR facilitators (nonacetylated bovine serum albumin, the T4 gene 32 protein, and polyvinylpyrrolidone) and treatments (the use of GeneReleaser or ultrafiltration) for the relief from or removal of inhibitors of PCR amplification. The results of seeding and spiking studies showed that PCR inhibitors were presented in all DNA solutions extracted by the six methods. However, the effect of PCR inhibitors could be relieved significantly by the addition of 400 ng of bovine serum albumin/mul or 25 ng of T4 gene 32 protein/mul to the PCR mixture. With the inclusion of bovine serum albumin in the PCR mixture, DNA extracted with the FastDNA SPIN kit for soil without oocyst isolation resulted in PCR performance similar to that produced by the QIAamp DNA minikit after oocysts were purified by immunomagnetic separation.  相似文献   

14.
In a direct comparison with established methods for Phytophthora ramorum detection (isolation followed by morphological identification, or conventional DNA extraction followed by TaqMan real-time PCR) a rapid, simplified detection method in which membranes of lateral flow devices (LFDs) are added directly to TaqMan real-time PCR reactions was used to test 202 plant samples collected by plant health inspectors in the field. P. ramorum prevalence within the 202 samples was approximately 40% according to routine testing by isolation or TaqMan real-time PCR. The diagnostic sensitivity and specificity of the rapid detection method were 96.3% and 91.2%, respectively. This method can be used in conjunction with Phytophthora spp. lateral flow devices to reduce the number of samples requiring testing using more laborious conventional methods. The effect of combining prescreening for Phytophthora spp. with P. ramorum-specific tests is discussed in terms of the positive and negative predictive values of species-specific detection when testing samples collected in different inspection scenarios.  相似文献   

15.

Background

Human schistosomiasis remains a serious worldwide public health problem. At present, a sensitive and specific assay for routine diagnosis of schistosome infection is not yet available. The potential for detecting schistosome-derived DNA by PCR-based methods in human clinical samples is currently being investigated as a diagnostic tool with potential application in routine schistosomiasis diagnosis. Collection of diagnostic samples such as stool or blood is usually difficult in some populations. However, urine is a biological sample that can be collected in a non-invasive method, easy to get from people of all ages and easy in management, but as a sample for PCR diagnosis is still not widely used. This could be due to the high variability in the reported efficiency of detection as a result of the high variation in urine samples’ storage or conditions for handling and DNA preservation and extraction methods.

Methodology/Principal Findings

We evaluate different commercial DNA extraction methods from a series of long-term frozen storage human urine samples from patients with parasitological confirmed schistosomiasis in order to assess the PCR effectiveness for Schistosoma spp. detection. Patientś urine samples were frozen for 18 months up to 7 years until use. Results were compared with those obtained in PCR assays using fresh healthy human urine artificially contaminated with Schistosoma mansoni DNA and urine samples from mice experimentally infected with S. mansoni cercariae stored frozen for at least 12 months before use. PCR results in fresh human artificial urine samples using different DNA based extraction methods were much more effective than those obtained when long-term frozen human urine samples were used as the source of DNA template.

Conclusions/Significance

Long-term frozen human urine samples are probably not a good source for DNA extraction for use as a template in PCR detection of Schistosoma spp., regardless of the DNA method of extraction used.  相似文献   

16.
Species-specific primers were constructed for Scrippsiella trochoidea, Protoceratium reticulatum and Lingulodinium polyedrum, which all are common cosmopolitan cyst forming dinoflagellates. The designed primers amplified a product of expected size from cultured planktonic cells of the three species, and did not yield any product with a wide range of other algal species used as negative controls. The PCR method for detection and identification of dinoflagellate cysts from the three species was applied on field samples. Undisturbed surface sediment was collected along the southwest coast of India and the west coast of Sweden. DNA extract from sediment including DNA from dinoflagellate cysts could be obtained after repeated grinding with mortar and pestle under liquid nitrogen followed by microwave boiling. All sediment samples that contained any of the target species as confirmed by microscopy, were also positive for PCR. Field samples negative for any of the target species by microscopy, were also negative by PCR. Restriction enzyme digestion and/or DNA sequencing confirmed the specificity of all the PCR products from field samples. The yield of DNA from sediment extraction was low, and therefore nested PCR was necessary for accurate species-specific detection of the three species in most of the field samples.  相似文献   

17.
While the morphological identification of prey remains in predators' faeces is the most commonly used method to study trophic interactions, many studies indicate that this method does not detect all consumed prey. Polymerase chain reaction–based methods are increasingly used to detect prey DNA in the predator food bolus and have proven efficient, delivering highly accurate results. When studying complex diet samples, the extraction of total DNA is a critical step, as polymerase chain reaction (PCR) inhibitors may be co‐extracted. Another critical step involves a careful selection of suitable group‐specific primer sets that should only amplify DNA from the targeted prey taxon. In this study, the food boluses of five Rattus rattus and seven Rattus exulans were analysed using both morphological and molecular methods. We tested a panel of 31 PCR primer pairs targeting bird, invertebrate and plant sequences; four of them were selected to be used as group‐specific primer pairs in PCR protocols. The performances of four DNA extraction protocols (QIAamp® DNA stool mini kit, DNeasy® mericon food kit and two of cetyltrimethylammonium bromide‐based methods) were compared using four variables: DNA concentration, A260/A280 absorbance ratio, food compartment analysed (stomach or faecal contents) and total number of prey‐specific PCR amplification per sample. Our results clearly indicate that the A260/A280 absorbance ratio, which varies between extraction protocols, is positively correlated to the number of PCR amplifications of each prey taxon. We recommend using the DNeasy® mericon food kit (QIAGEN), which yielded results very similar to those achieved with the morphological approach.  相似文献   

18.
The purpose of the present study was to investigate the application of various sample preparation methods (cell washing before lysis, purification of DNA using phenol extraction method, immunomagnetic separation-IMS) for the final PCR identification of Salmonellacells. The presence of PCR inhibitors in processed food products (milk powder and dried eggs) can be the cause of false-negative results in PCR without IMS of target cells. It was also demonstrated that IMS-PCR was successfully used for identification and quick confirmation of untypical Salmonella strains isolated from human stool samples and rabbit meat. However, IMS cannot eliminate intracellular PCR inhibitors present in immunoseparated Salmonella cells. These inhibitors must be taken into consideration in evaluation of PCR procedure.  相似文献   

19.
Chinese hamster ovary (CHO) cell cultures used to produce biopharmaceuticals are tested for mycoplasma contamination as part of the ensurance of a safe and pure product. The current U.S. Food and Drug Administration (FDA) regulatory guideline recommends using two procedures: broth/agar cultures and DNA staining of indicator cell cultures. Although these culture methods are relatively sensitive to most species, theoretically capable of detecting as few as 1-10 cfu/ml of most species, the overall procedure is lengthy (28 d), costly and less sensitive to noncultivable species. The detection of mycoplasma using the polymerase chain reaction (PCR) method has been considered an alternative method because it is relatively fast (1-2 d), inexpensive, and independent of culture conditions, however, limitations in sensitivity (limit of detection >/=1000 cfu/ml) and the risk of false positive and false negative results have prevented PCR from replacing the traditional culture methods in the industrial setting. In this report, we describe a new PCR assay for mycoplasma detection that appears to resolve these issues while being sufficiently simple and inexpensive for routine use. This assay applies readily available techniques in DNA extraction together with a modified single-step PCR using a previously characterized primer pair that is homologous to a broad spectrum of mycoplasma species known to infect mammalian cell cultures. Analysis is made easy by the detection of only a single amplification product within a narrow size range, 438-470 bp. A high sensitivity and specificity for mycoplasma detection in CHO cell production cultures is made possible through the combination of three key techniques: 8-methoxypsoralen and UV light treatment to decontaminate PCR reagents of DNA; hot-start Taq DNA polymerase to reduce nonspecific priming events; and touchdown- (TD-) PCR to increase sensitivity while also reducing nonspecific priming events. In extracts of mycoplasma DNA, the limit of detection for eight different mycoplasma species is 10 genomic copies. In CHO cell production cultures containing gentamicin, the limit of detection for a model organism, gentamicin-resistant M. hyorhinis, is 1 cfu/ml. The sensitivity and specificity of this PCR assay for mycoplasma detection in CHO cell production cultures appear similar to the currently used culture methods and thus should be considered as an alternative method by the biopharmaceutical industry.  相似文献   

20.
Molecular epidemiology and genomic characterisation studies require the screening of large numbers of individuals to achieve statistical significance. Although many of the novel DNA extraction methods offer convenient, high-throughput capabilities, their use for the processing of larger sample volumes becomes very expensive. We are currently compiling the Mexican Genomic DNA Collection in order to address specific health priorities through molecular techniques. Our approach employs a low-cost laundry detergent based DNA extraction technique that maximizes DNA yield and quality. We have optimised four different modalities (maxiprep, midiprep, miniprep and microprep) for two different sources (leukocyte concentrates and whole blood). Our optimised protocol produces 4.5 mg of DNA from 15 ml of blood-bank discarded leukocyte concentrates with spectrophotometric quality, genomic integrity and PCR suitability that rivals that of phenol–chloroform extracted samples. We present evidence of many PCR applications that we have carried out on samples extracted with this technique including Killer-cell Immunoglobulin-like Receptor genotyping, Short Tandem Repeat profiling as well as nucleic acid screening for hepatitis B and human immunodeficiency type-1 viruses. This paper highlights many of the advantages that this DNA extraction technique provides over existing methodologies, whether it is used to establish large genomic DNA collections (as was our main intention) or as a routine DNA extraction method for PCR applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号