首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Membrane current was recorded from a single primate rod with a suction pipette while the cell was bath perfused with solutions maintained at a temperature of approximately 38 degrees C. A transient inward current was observed at the onset of bright illumination after briefly exposing the outer segment in darkness to Ringer's (Locke) solution containing 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cGMP phosphodiesterase. After briefly removing external Na+ from around the outer segment in darkness, a similar current was observed upon Na+ restoration in bright light. By analogy to amphibian rods, this inward current was interpreted to represent the activity of an electrogenic Na(+)-dependent Ca2+ efflux, which under physiological conditions in the light is expected to reduce the free Ca2+ in the outer segment and provide negative feedback (the "Ca2+ feedback") to the phototransduction process. The exchange current had a saturated amplitude of up to approximately 5 pA and a decline time course that appeared to have more than one exponential component. In the absence of the Ca2+ feedback, made possible by removing the Ca2+ influx and efflux at the outer segment using a 0 Na(+)-0 Ca2+ external solution, the response of a rod to a dim flash was two to three times larger and had a longer time to peak than in physiological solution. These changes can be approximately accounted for by a simple model describing the Ca2+ feedback in primate rods. The dark hydrolytic rate for cGMP was estimated to be 1.2 s-1. The incremental hydrolytic rate, beta*(t), activated by one photoisomerization was approximately 0.09 s-1 at its peak, with a time-integrated activity, integral of beta*(t)dt, of approximately 0.033, both numbers being derived assuming spatial homogeneity in the outer segment. Finally, we have found that primate rods adapt to light in much the same way as amphibian and other mammalian rods, such as showing a Weber-Fechner relation between flash sensitivity and background light. The Ca2+ feedback model we have constructed can also explain this feature reasonably well.  相似文献   

2.
Recovery of the light response in vertebrate photoreceptors requires the shutoff of both active intermediates in the phototransduction cascade: the visual pigment and the transducin-phosphodiesterase complex. Whichever intermediate quenches more slowly will dominate photoresponse recovery. In suction pipette recordings from isolated salamander ultraviolet- and blue-sensitive cones, response recovery was delayed, and the dominant time constant slowed when internal [Ca(2+)] was prevented from changing after a bright flash by exposure to 0Ca(2+)/0Na(+) solution. Taken together with a similar prior observation in salamander red-sensitive cones, these observations indicate that the dominance of response recovery by a Ca(2+)-sensitive process is a general feature of amphibian cone phototransduction. Moreover, changes in the external pH also influenced the dominant time constant of red-sensitive cones even when changes in internal [Ca(2+)] were prevented. Because the cone photopigment is, uniquely, exposed to the external solution, this may represent a direct effect of protons on the equilibrium between its inactive Meta I and active Meta II forms, consistent with the notion that the process dominating recovery of the bright flash response represents quenching of the active Meta II form of the cone photopigment.  相似文献   

3.
To study the actions of Ca2+ on “early” stages of the transduction cascade, changes in cytoplasmic calcium concentration (Ca2+ i) were opposed by manipulating Ca2+ fluxes across the rod outer segment membrane immediately following a bright flash. If the outer segment was exposed to 0 Ca2+/0 Na+ solution for a brief period immediately after the flash, then the period of response saturation was prolonged in comparison with that in Ringer solution. But if the exposure to 0 Ca2+/0 Na+ solution instead came before or was delayed until 1 s after the flash then it had little effect. The degree of response prolongation increased with the duration of the exposure to 0 Ca2+/0 Na+ solution, revealing a time constant of 0.49 ± 0.03 s. By the time the response begins to recover from saturation, Ca2+ i seems likely to have fallen to a similar level in each case. Therefore the prolongation of the response when Ca2+ i was prevented from changing immediately after the flash seems likely to reflect the abolition of actions of the usual dynamic fall in Ca2+ i on an early stage in the transduction cascade at a site which is available for only a brief period after the flash. One possibility is that the observed time constant corresponds to the phosphorylation of photoisomerized rhodopsin.  相似文献   

4.
In previous work we have presented evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors (1989. J. Gen. Physiol. 93:473-492). This article assesses the contributions to photoreceptor physiology from Na+/Ca2+ exchange. Four separate physiological processes were considered: maintenance of resting sensitivity, light-induced excitation, light adaptation, and dark adaptation. (a) Resting sensitivity: reduction of [Na+]o caused a [Ca2+]o-dependent reduction in light sensitivity and a speeding of the time courses of the responses to individual test flashes; this effect was dependent on the final value to which [Na+]o was reduced. The desensitization caused by Na+ reduction was dependent on the initial sensitivity of the photoreceptor; in fully dark-adapted conditions no desensitization was observed; in light-adapted conditions, extensive desensitization was observed. (b) Excitation: Na+ reduction in fully dark-adapted conditions caused a Ca2+o-dependent depolarizing phase in the receptor potential that persisted beyond the stimulus duration and was evoked by a bright adapting flash. (c) Light adaptation: the degree of desensitization induced by a bright adapting flash was Na+o dependent, being larger with lower [Na+]o. Na+ reduction enhanced light adaptation only at intensities brighter than 4 x 10(-6) W/cm2. In addition to being Na+o dependent, light adaptation was Ca2+o dependent, being greater at higher [Ca2+]o. (d) Dark adaptation: the recovery of light sensitivity after adapting illumination was Na+o dependent. Dark adaptation after bright illumination in voltage-clamped and in unclamped conditions was faster in normal-Na+ saline than in reduced Na+ saline. The final sensitivity to which photoreceptors recovered was lower in reduced-Na+ saline when bright adapting illumination was used. The results suggest the involvement of Na+/Ca2+ exchange in each of these physiological processes. Na+/Ca2+ exchange may contribute to these processes by counteracting normal elevations in [Ca2+]i.  相似文献   

5.
The role of calcium as a regulator of light adaptation in rod photoreceptors was examined by manipulation of the intracellular Ca2+ concentration through the use of the calcium ionophore A23187 and external Ca2+ buffers. These studies utilized suspensions of isolated and purified frog rod outer segments that retain their mitochondria-rich inner segments (OS-IS). Three criteria of the dark- and light-adapted flash response were characterized as a function of the Ca2+ concentration: (a) the time to peak, (b) the rate of recovery, and (c) the response amplitude or sensitivity. For all Ca2+ concentrations examined, the time to peak of the flash response was accelerated in the presence of background illumination, suggesting that mechanisms controlling this aspect of adaptation are independent of the Ca2+ concentration. The recovery kinetics of the flash response appeared to depend on the Ca2+ concentration. In 1 mM Ca2+-Ringer's and 300 nM Ca2+-Ringer's + A23187, background illumination enhanced the recovery rate of the response; however, in 10 and 100 nM Ca2+-Ringer's + A23187, the recovery rates were the same for dark- and light-adapted responses. This result implies that a critical level of Ca2+ may be necessary for background illumination to accelerate the recovery of the flash response. The sensitivity of the flash response in darkness (SDF) was dependent on the Ca2+ concentration. In 1 mM Ca2+-Ringer's SDF was 0.481 pA per bleached rhodopsin (Rh*); a background of four Rh*/s decreased SDF by half (Io). At 300 nM Ca2+ + A23187, SDF was reduced to 0.0307 pA/Rh* and Io increased to 60 Rh*/s. At 100 nM Ca2+ + A23187, SDF was reduced further to 0.0025 pA/Rh* and Io increased to 220 Rh*/s. In 10 nM Ca2+ + A23187, SDF was lowered to 0.00045 pA/Rh* and Io raised to 760 RhI/s. Using these values of SDF and Io for each respective Ca2+ concentration, the dependence of the flash sensitivity on background intensity could be described by the Weber-Fechner relation. Under low Ca2+ conditions + A23187, bright background illumination could desensitize the flash response. These results are consistent with the idea that the concentration of Ca2+ may set the absolute magnitude of response sensitivity in darkness, and that there exist mechanisms capable of adapting the photoresponse in the absence of significant changes in cytoplasmic Ca2+ concentration.  相似文献   

6.
Experiments were performed on rod photoreceptors isolated from the eye of the larval tiger salamander to determine if the same or different mechanisms underlie the desensitization produced by dim background light (background adaptation) and that which persists in the steady state in darkness after a significant fraction of the photopigment is bleached (bleaching adaptation). We have examined adaptational effects after light that bleached between approximately 50% and 95% of the photopigment under conditions which preclude pigment regeneration. The steady-state desensitization, far greater than that predicted by quantum-catch loss, is relieved upon regeneration of the visual pigment with 11-cis retinal. We measured the spread of desensitization along the long axis of the rod after a local bright bleach at one end by comparing responses to dim local test flashes elicited in different regions of the outer segment, before and after bleaching. The space constant for this spread was less than 2.5 microns. We have previously measured the space constant for the longitudinal spread of desensitization during a local dim background in Ambystoma rods to be 7 microns. This is similar to a space constant of 6 microns measured under similar conditions in Bufo rods by Lamb et al. (1981. J. Physiol. 319:463-496). If calcium carries the signal for background desensitization, this difference in space constant for background and bleaching adaptation precludes it as the messenger for the steady component of bleaching adaptation. Experiments with isobutylmethyl xanthine (IBMX) also indicate that Ca2+ as well as c-GMP are unlikely regulators of bleaching desensitization, since elevation of cytosolic levels of both of these internal messengers by IBMX has little effect on sensitivity in bleach-adapted cells. All of our findings are consistent with the notion that bleaching adaptation is not mediated by a freely diffusible cytoplasmic messenger.  相似文献   

7.
A rich variety of mechanisms govern the inactivation of the rod phototransduction cascade. These include rhodopsin phosphorylation and subsequent binding of arrestin; modulation of rhodopsin kinase by S- modulin (recoverin); regulation of G-protein and phosphodiesterase inactivation by GTPase-activating factors; and modulation of guanylyl cyclase by a high-affinity Ca(2+)-binding protein. The dependence of several of the inactivation mechanisms on Ca2+i makes it difficult to assess the contributions of these mechanisms to the recovery kinetics in situ, where Ca2+i is dynamically modulated during the photoresponse. We recorded the circulating currents of salamander rods, the inner segments of which are held in suction electrodes in Ringer's solution. We characterized the response kinetics to flashes under two conditions: when the outer segments are in Ringer's solution, and when they are in low-Ca2+ choline solutions, which we show clamp Ca2+i very near its resting level. At T = 20-22 degrees C, the recovery phases of responses to saturating flashes producing 10(2.5)-10(4.5) photoisomerizations under both conditions are characterized by a dominant time constant, tau c = 2.4 +/- 0.4 s, the value of which is not dependent on the solution bathing the outer segment and therefore not dependent on Ca2+i. We extended a successful model of activation by incorporating into it a first-order inactivation of R*, and a first-order, simultaneous inactivation of G-protein (G*) and phosphodiesterase (PDE*). We demonstrated that the inactivation kinetics of families of responses obtained with Ca2+i clamped to rest are well characterized by this model, having one of the two inactivation time constants (tau r* or tau PDE*) equal to tau c, and the other time constant equal to 0.4 +/- 0.06 s.  相似文献   

8.
In cardiac cells, evoked Ca2+ releases or spontaneous Ca2+ waves activate the inward Na+/Ca2+ exchange current (INaCa), which may modulate membrane excitability and arrhythmogenesis. In this study, we examined changes in membrane potential due to INaCa elicited by sarcoplasmic reticulum (SR) Ca2+ release in guinea pig ventricular myocytes using whole cell current clamp, fluorescence, and confocal microscopy. Inhibition of INaCa by Na+-free, Li+-containing Tyrode solution reversibly abbreviated the action potential duration at 90% repolarization (APD90) by 50% and caused SR Ca2+ overload. APD90 was similarly abbreviated in myocytes exposed to the Na+/Ca2+ exchange inhibitor KB-R7943 (5 microM) or after inhibition of SR Ca2+ release with ryanodine (20 microM). In the absence of extracellular Na+, spontaneous SR Ca2+ releases caused minimal changes in resting membrane potential. After the myocytes were returned to Na+-containing solution, the potentiated intracellular Ca2+ concentration ([Ca2+]i) transients dramatically prolonged APD90 and [Ca2+]i oscillations caused delayed and early afterdepolarizations (DADs and EADs). Laser-flash photolysis of caged Ca2+ mimicked the effects of spontaneous [Ca2+]i oscillations, confirming that APD prolongation, DADs, and EADs could be ascribed to intracellular Ca2+ release. These results suggest that Na+/Ca2+ exchange is a major physiological determinant of APD and that INaCa activation by spontaneous SR Ca2+ release/oscillations, depending on the timing, can account for both DADs and EADs during SR Ca2+ overload.  相似文献   

9.
The effects of altering extracellular Ca(2+) levels on the electrical and adaptive properties of toad rods have been examined. The retina was continually superfused in control (1.6 mM Ca(2+)) or test ringer’s solutions, and rod electrical activity was recorded intracellularly. Low-calcium ringer’s (10(-9)M Ca(2+)) superfused for up to 6 min caused a substantial depolarization of the resting membrane potential, an increase in light-evoked response amplitudes, and a change in the waveform of the light-evoked responses. High Ca(2+) ringer’s (3.2 mM) hyperpolarized the cell membrane and decreased response amplitudes. However, under conditions of either low or high Ca(2+) superfusion for up to 6 min, in both dark-adapted and partially light-adapted states, receptor sensitivity was virtually unaffected; i.e., the V-log I curve for the receptor potential was always located on the intensity scale at a position predicted by the prevailing light level, not by Ca(2+) concentration. Thus, we speculate that cytosol Ca(2+) concentration is capable of regulating membrane potential levels and light-evoked response amplitudes, but not the major component of rod sensitivity. Low Ca(2+) ringer’s also shortened the period of receptor response saturation after a bright but nonbleaching light flash, hence accelerating the onset of both membrane potential and sensitivity recovery during dark adaptation.

Exposure of the retina to low Ca(2+) (10(-9)M) ringer’s for long periods (7-15 min) caused dark-adapted rods to lose responsiveness. Response amplitudes gradually decreased, and the rods became desensitized. These severe conditions of low Ca(2+) caused changes in the dark-adapted rod that mimic those observed in rods during light adaptation. We suggest that loss of receptor sensitivity during prolonged exposure to low Ca(2+) ringer’s results from a decrease of intracellular (intradisk) stores of Ca(2+); i.e., less Ca(2+) is thereby released per quantum catch.

  相似文献   

10.
The effect of extracellular pH (pHo) on the duration of calcium-dependent chloride currents (ICl(Ca] was studied in voltage clamped AtT-20 pituitary cells. ICl(Ca) was activated by Ca2+ influx through plasma membrane Ca2+ channels, which were opened by step depolarization to voltages between -20 and +60 mV. Increasing pHo from 7.3 to 8.0 reversibly prolonged ICl(Ca) tail currents in perforated patch recordings from cells bathed in both Na(+)-containing and Na(+)-free solutions. This prolongation was prevented in standard whole cell recordings when the pipette solution contained 0.5 mM EGTA. The effects of raised pHo were not due to alteration of intracellular pH, since tail current prolongation still occurred when intracellular pH was buffered at 7.3 with 80 mM HEPES. The prolongation of ICl(Ca) at pHo 8 could not be accounted for by a direct action on Ca2+ channels, since tail currents were prolonged when pHo was changed rapidly during the tail current, after all Ca2+ channels were closed. The effects of increasing pHo on ICl(Ca) also could not be explained by a direct action on Cl- channels, since changing to pHo 8 did not prolong Cl- tail currents when intracellular Ca2+ concentration [( Ca2+]i) was fixed by EGTA in whole cell recordings. Raising pHo did, however, prolong depolarization-evoked [Ca2+]i transients, measured directly with the Ca2+ indicator dye, fura-2. Taken together, these data demonstrate the presence of a Na(+)-independent, pHo-sensitive mechanism for reduction of [Ca2+]i after influx through Ca2+ channels. This mechanism is associated with the plasma membrane, and is active on a time scale that is relevant to the duration of single action potentials in these cells. We suggest that this mechanism is the plasma membrane Ca2+ ATPase.  相似文献   

11.
The selectivity of Ca2+ over Na+ is approximately 3.3-fold larger in cGMP-gated channels of cone photoreceptors than in those of rods when measured under saturating cGMP concentrations, where the probability of channel opening is 85-90%. Under physiological conditions, however, the probability of opening of the cGMP-gated channels ranges from its largest value in darkness of 1-5% to essentially zero under continuous, bright illumination. We investigated the ion selectivity of cGMP-gated channels as a function of cyclic nucleotide concentration in membrane patches detached from the outer segments of rod and cone photoreceptors and have found that ion selectivity is linked to gating. We determined ion selectivity relative to Na+ (PX/PNa) from the value of reversal potentials measured under ion concentration gradients. The selectivity for Ca2+ over Na+ increases continuously as the probability of channel opening rises. The dependence of PCa/PNa on cGMP concentration, in both rods and cones, is well described by the same Hill function that describes the cGMP dependence of current amplitude. At the cytoplasmic cGMP concentrations expected in dark-adapted intact photoreceptors, PCa/PNa in cone channels is approximately 7.4-fold greater than that in rods. The linkage between selectivity and gating is specific for divalent cations. The selectivity of Ca2+ and Sr2+ changes with cGMP concentration, but the selectivity of inorganic monovalent cations, Cs+ and NH4+, and organic cations, methylammonium+ and dimethylammonium+, is invariant with cGMP. Cyclic nucleotide-gated channels in rod photoreceptors are heteromeric assemblies of alpha and beta subunits. The maximal PCa/PNa of channels formed from alpha subunits of bovine rod channels is less than that of heteromeric channels formed from alpha and beta subunits. In addition, Ca2+ is a more effective blocker of channels formed by alpha subunits than of channels formed by alpha and beta subunits. The cGMP-dependent shift in divalent cation selectivity is a property of alphabeta channels and not of channels formed from alpha subunits alone.  相似文献   

12.
Photoreceptors of the retina adapt to ambient light in a manner that allows them to detect changes in illumination over an enormous range of intensities. We have discovered a novel form of adaptation in mouse rods that persists long after the light has been extinguished and the rod's circulating dark current has returned. Electrophysiological recordings from individual rods showed that the time that a bright flash response remained in saturation was significantly shorter if the rod had been previously exposed to bright light. This persistent adaptation did not decrease the rate of rise of the response and therefore cannot be attributed to a decrease in the gain of transduction. Instead, this adaptation was accompanied by a marked speeding of the recovery of the response, suggesting that the step that rate-limits recovery had been accelerated. Experiments on knockout rods in which the identity of the rate-limiting step is known suggest that this adaptive acceleration results from a speeding of G protein/effector deactivation.  相似文献   

13.
We have used a preparation of isolated, intact rod photoreceptors to correlate the effects of flash illumination on the intracellular cyclic GMP content and the membrane current. We find that the recovery of cyclic GMP levels after brief flash illumination requires approximately twice as much time as the recovery of the membrane current. In contrast, the subsecond kinetics of the cyclic GMP response to light are faster than the kinetics of membrane current suppression. Both cyclic GMP and the membrane current show graded responses to a wide range of flash intensities; however, in a low Ca2+-Ringer's solution, dim flashes can trigger a decrease in cyclic GMP concentration with no corresponding decrease in membrane current. These results suggest that either other factors can regulate the membrane current, or that measurements of total cellular cyclic GMP do not accurately reflect dynamic changes in cyclic GMP concentration in the vicinity of the light-regulated channel. Changes in cyclic GMP concentration in the presence of background illumination exhibit adaptational behavior similar to that observed in a light-adapted photoresponse: acceleration in the response kinetics and a decrease in response amplitude. That this result is observed in rods depleted of internal Ca2+ suggests a Ca2+-independent mechanism by which background illumination can accelerate the cyclic GMP response.  相似文献   

14.
This study examines whether changes in cGMP concentration initiated by illumination of frog rod photoreceptors occur rapidly enough to implicate cGMP as an intermediate between rhodopsin activation in the disc membrane and permeability changes in the plasma membrane. Previous studies using whole retinas or isolated outer segments have provided conflicting evidence on the role of cGMP in the initial events of phototransduction. The rod photoreceptor preparation employed in this work consists of purified suspensions of outer segments still attached to the mitochondria-rich ellipsoid portion of the inner segment. These photoreceptors are known to retain normal electrophysiological responses to illumination and have cGMP levels comparable to those measured in the intact retina. When examined under several different conditions, changes in cGMP concentrations were found to occur as rapidly or more rapidly than the suppression of the membrane dark current. Subsecond changes in cGMP concentration were analyzed with a rapid quench apparatus and confirmed by comparison with a rapid freezing technique. In a 1 mM Ca2+ Ringer's solution, cGMP levels decrease to 65% of their final extent within 200 ms after bright illumination; changes in membrane dark current follow a similar time course. When the light intensity is decreased to 8000 rhodopsins bleached per rod per s, the light-induced cGMP decrease is completed within 50 ms, with 7 X 10(5) cGMP molecules hydrolyzed per rhodopsin bleached. During this time the dark current has not yet begun to change. Thus, under physiological conditions it is clear that changes in cGMP concentration precede permeability changes at the plasma membrane. The correlation of rapid changes in cGMP levels with changes in membrane current leave open the possibility that changes in cGMP concentration may be an obligatory step in the reaction sequence linking rhodopsin activation by light and the resultant decrease in sodium permeability of the plasma membrane.  相似文献   

15.
We studied the ionic permeability of cGMP-dependent currents in membrane patches detached from the outer segment of retinal cone and rod photoreceptors. Reversal potentials measured in membranes exposed to symmetric Na+ but with varying cytoplasmic Ca2+ concentrations reveal that the permeability ratio, PCa/PNa, is higher in the cGMP-gated channels of cones (7.6 +/- 0.8) than in those of rods (3.1 +/- 1.0). Ca2+ blocks both channels in a voltage-dependent manner. At any Ca2+ concentration, the channel block is maximal near the ionic reversal potential. The maximal block is essentially identical in channels of cones and rods with respect to its extent and voltage and Ca2+ dependence. The Ca2+ block is relieved by voltage, but the features of this relief differ markedly between rods and cones. Whereas the Boltzmann distribution function describes the relief of block by hyperpolarizing voltages, any given voltage is more effective in relieving the Ca2+ block in cones than in rods. Similarly, depolarizing voltages more effectively relieve Ca2+ block in cones than in rods. Our results suggest that channels contain two binding sites for Ca2+, one of which is similar in the two receptor types. The second site either interacts more strongly with Ca2+ than the first one or it is located differently in the membrane, so as to be less sensitive to membrane voltage. The channels in rods and cones differ in the features of this second site. The difference in Ca2+ permeability between the channels is likely to result in light-dependent changes in cytoplasmic Ca2+ concentration that are larger and faster in cones than in rods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
After neuraminidase treatment the Na+/Ca2+ exchanger of bovine rod outer segments was found to specifically bind Ricinus communis agglutinin. SDS gel electrophoresis and Western blotting of ricin-binding proteins purified from rod outer segment membranes by lectin affinity chromatography revealed the existence of two major polypeptides of Mr 215K and 103K, the former of which was found to specifically react with PMe 1B3, a monoclonal antibody specific for the 230-kDa non-neuraminidase-treated Na+/Ca2+ exchanger. Reconstitution of the ricin affinity-purified exchanger into calcium-containing liposomes revealed that neuraminidase treatment had no significant effect on the kinetics of Na+/Ca2+ exchange activation by sodium. We further investigated the density of the Na+/Ca2+ exchanger in disk and plasma membrane preparations using Western blotting, radioimmunoassays, immunoelectron microscopy, and reconstitution procedures. The results indicate that the Na+/Ca2+ exchanger is localized in the rod photoreceptor plasma membrane and is absent or present in extremely low concentrations in disk membranes, as we have previously shown to be the case for the cGMP-gated cation channel. Previous reports describing the existence of Na+/Ca2+ exchange activity in rod outer segment disk membrane preparations may be due to the fusion of plasma membrane components and/or the presence of contaminating plasma membrane vesicles.  相似文献   

17.
Membrane current and light response were recorded from rods of monkey and guinea pig by means of suction electrodes. The correlation between adaptation and the Na+/K+ pump was investigated by measuring light-dependent changes in sensitivity with and without inhibition of Na+/K+ ATPase by strophanthidin. Strophanthidin was found to reduce the dark current, to slow the time course of the photoresponse, and to increase light sensitivity. At concentrations between 20 and 500 nM, the pump inhibitor suppressed in a reversible way the current re-activation occurring during prolonged illumination and modified the light-dependent decrease in sensitivity, which in control conditions approximates to a Weber-Fechner function. The effects of the pump inhibitor on the adaptive properties of rods are associated with an increased time constant of the membrane current attributed to the operation of the Na+:Ca2+,K+ exchanger. The effects of rapid application of the pump inhibitor on the current re-activation are consistent with the idea that significant changes in the internal sodium occur in rods of mammals during background illumination and that they play an important role in the process of light adaptation.  相似文献   

18.
Na+- and cGMP-induced Ca2+ fluxes in frog rod photoreceptors   总被引:2,自引:1,他引:1       下载免费PDF全文
We have examined the Ca2+ content and pathways of Ca2+ transport in frog rod outer segments using the Ca2+-indicating dye arsenazo III. The experiments employed suspensions of outer segments of truncated, but physiologically functional, frog rods (OS-IS), intact isolated outer segments (intact OS), and leaky outer segments (leaky OS with a plasma membrane leaky to small solutes, but with sealed disk membranes). We observed the following. Intact OS or OS-IS isolated and purified in Percoll-Ringer's solution contained an average of 2.2 mM total Ca2+, while leaky OS contained 2.0 mM total Ca2+. This suggests that most of the Ca2+ in OS-IS is contained inside OS disks. Phosphodiesterase inhibitors increased the Ca2+ content to approximately 4.2 mM in intact OS or OS-IS, whereas the Ca2+ content of leaky OS was not altered. Na-Ca exchange was the dominant pathway for Ca2+ efflux in both intact and leaky OS/OS-IS. The rate of Na-Ca exchange in intact OS/OS-IS was half-maximal between 30 and 50 mM Na+; at 50 mM Na+, this amounted to 5.8 X 10(7) Ca2+/OS X s or 0.05 mM total Ca2+/s. This is much larger than the Ca2+ component of the dark current. Other alkali cations could not replace Na+ in Na-Ca exchange in either OS-IS or leaky OS. They inhibited the rate of Na-Ca exchange (K greater than or equal to Rb greater than Cs greater than or equal to Li greater than TMA) and, as the inhibition became greater, a delay developed in the onset of Na-Ca exchange. The inhibition of Na-Ca exchange by alkali cations correlates with the prolonged duration of the photoresponse induced by these cations (Hodgkin, A. L., P. A. McNaughton, and B. J. Nunn. 1985. Journal of Physiology. 358:447-468). In addition to Na-Ca exchange, disk membranes in leaky OS showed a second pathway of Ca2+ transport activated by cyclic GMP (cGMP). The cGMP-activated pathway required the presence of alkali cations and had a maximal rate of 9.7 X 10(6) Ca2+/OS X s. cGMP caused the release of only 30% of the total Ca2+ from leaky OS. The rate of Na-Ca exchange in leaky OS amounted to 1.9 X 10(7) Ca2+/OS X s.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.  相似文献   

20.
We have investigated an electrostatic screening hypothesis of cationic inhibition of quantal release at the neuromuscular junction of the frog (Rana pipiens). According to this hypothesis, increasing the extracellular concentration of an inhibitory cation reduces the quantal content (m) of the end-plate potential by reducing the ability of negative surface charge to attract Ca2+ to the external surface of the presynaptic membrane. The inhibitory power of various cations should depend only on their net ionic charge and should increase strongly with increasing charge. We have demonstrated, in Ringer's solutions containing modified concentrations of Na+, Ca+, and Mg2+, that at fixed concentrations of Ca2+ and Na+ (a) the dependence of m on [Mg2+]0 is satisfactorily accounted for by electrostatic theory and (b) the dependence of m on the univalent cation concentration of the modified Ringer's solution is satisfactorily predicted from the Mg2+ inhibition of m. (Glucosamine or arginine was used to replace a fraction of the Na+ content of Ringer's solution in the latter experiments.) These results are consistent with electrostatic screening actions of Mg2+ and univalent cations in the inhibition of m. We have also re-examined the inhibition of m caused by the addition to Ringer's solution of two trace concentration divalent cations, Mn2+ and Sr2+. Our data suggest that the inhibition of m by Sr2+ at high quantal contents may also be due to surface charge screening, while the potent inhibitory actions of Mn2+ may be due to its ability to bind negative surface charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号