首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal adaptation for potassium (K) conservation has been demonstrated in isolated perfused kidneys from rats within 3 days of K depletion and appears to be independent of aldosterone and sodium excretion. This study was designed to investigate whether the renal adaptation for K conservation is independent of ambient [K] and renal tissue levels of K and whether ouabain may have effects on K excretion, which are in contrast to the effects on K excretion in normal animals. In the first study, rats K depleted for 3 days received 2500 mu equiv. KCI intraperitoneally, while other K-depleted rats and a group of control diet animals received intraperitoneal H2O alone to determine whether simple restoration of K deficits would reverse the renal adaptation for K conservation. Intraperitoneal KCI increased plasma [K] and kidney tissue K significantly within 3 h in the K-repleted group compared with the K-depleted rats. Isolated Kidneys were perfused from the three groups of rats 3 h after intraperitoneal injection. Despite K repletion in vivo, perfused kidneys from the K-repleted group still had significantly decreased K excretion (1.28 +/- 0.085 mu equiv./min) compared with controls (2.05 +/- 0.291 mu equiv./min), and K excretion was still not different from the K-depleted group (0.57 +/- 0.134 mu equiv./min). However, fractional K excretion by the kidneys from K-repleted rats was increased above K-depleted kidneys (0.48 +/- 0.051 vs. 0.18 +/- 0.034, p less than 0.01). Despite the increased renal tissue K in K-repleted kidneys at the start of perfusion (285 +/- 5.1 vs. 257 +/- 5.4 mu equiv./g), by the end of the perfusion tissue K in perfused kidneys was identical in all three groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Recent experiments indicate that prostaglandin E2 potentiates the vasodilatory properties of leukotrienes in the skin microcirculation. The present experiments were undertaken to study the effect of leukotriene D4 and prostaglandin E2 on renal hemodynamics and urinary electrolytes in the dog. Experiments were performed in three groups of anesthetized Mongrel dogs: the first group was studied under hydropenia, whereas the two remaining groups were studied during water diuresis with (Group 3) or without indomethacin (Group 2). LTD4 (100 ng/min) and PGE2 (3 ug/min) were infused in the left renal artery to minimize systemic effects of these compounds. LTD4 alone failed to influence urinary sodium excretion in all 3 groups. In Group 1, urinary sodium increased from 77 +/- 6 to 393 +/- 74 uEq/min during PGE2, and further increased to 511 +/- 52 uEq/min during LTD4 + PGE2. No change occurred in the contralateral right kidney. In this group, glomerular filtration as well as renal plasma flow were not statistically influenced. In Group 2, the same phenomenon was observed for urinary sodium. The combined infusion of LTD4 + PGE2 increased urinary sodium without significant changes in glomerular filtration and renal plasma flow. Finally, in Group 3, indomethacin was shown to reduce the natriuretic effects of LTD4 and PGE2: during PGE2 alone, urinary sodium increased from 90 +/- 14 to 260 +/- 66 uEq/min, and only rose from 80 +/- 10 to 175 +/- 19 uEq/min during the combined infusion of LTD4 and PGE2. In groups 2 and 3, free water clearance was utilized as an index of sodium chloride reabsorption in the thick ascending limb: this parameter increased from 2.35 +/- 0.25 to 4.70 +/- 0.30 ml/min, while urinary volume was increasing from 3.55 +/- 0.25 to 10.05 +/- 0.65 ml/min, during LTD4 + PGE2. Indomethacin, administered in Group 3, (3 mg/kg/hr) again abolished the effect of combined PGE2 + LTD4. These results indicate a potentiating effect of leukotriene D4 on the PGE2-induced natriuresis in the anesthetized dog. These phenomena occurred in the absence of significant changes in renal hemodynamics, therefore suggesting a direct tubular effect of these arachidonic acid metabolites. Finally, the water diuresis experiments suggest a proximal site of action of PGE2 and LTD4.  相似文献   

3.
Studies were performed to determine the mechanism by which the antihypertensive agent clonidine increased urine flow. The response of the kidney has been examined in four combinations. The parameters of renal function have been compared during volume expansion by 1.5-2.0% body weight Ringer solution. In the control animals, volume expansion by 2% body weight, resulted in a slight increase in sodium excretion and urine flow. In 10 anesthetized dogs 1.0 microgram/kg/min of clonidine infused i.v. during 30 minutes (the total amount of clonidine infused was 30 micrograms/kg) decreased the arterial blood pressure from 136 +/- 13 mmHg to 127 +/- 12 mmHg and elevated urine flow from 2.95 +/- 1.65 ml/min to 4.34 +/- 1.77 ml/min while the urine osmolality diminished from 399 +/- 107 mosm/l to 265 +/- 90 mosm/l and the glomerular filtration remained constant. In 5 animals 0.1 microgram/kg/min of clonidine was infused into the left renal artery (this dose is corresponding to the renal fraction of the cardiac output) without any effects in the left kidney. 1.0 microgram/kg/min of clonidine infused directly into the left renal artery produced vasoconstriction in the ipsilateral kidney, decreased the glomerular filtration rate and the urine flow. By contrast in the right kidney the urine flow rose without hemodynamic changes, and the urine osmolality became hypoosmotic compared to the plasma. In ten dogs 1.0 microgram/kg/min of clonidine and 1 mU/kg/min of arginine-vasopressin were infused intravenously. The vasopressin infusion superimposed on the clonidine could not inhibit the increase of the urine excretion, and the fall of the urine osmolality. The results suggest that the clonidine increases the renal medullary blood flow possibly via a direct mechanism, decreases the sympathetic outflow to the kidney and via an indirect pathway, mediated by the renin-angiotensin system. The renal medullary flow increase produces a washout of the medullary osmotic gradient, and the water reabsorption diminishes.  相似文献   

4.
Renal formation of serotonin by decarboxylation of its amino acid precursor L-5-hydroxytryptophan (L-5-HTP) has been demonstrated with renal tissue homogenates and isolated perfused rat kidneys. Our objective in the present study was to determine whether the conversion of L-5-HTP to serotonin was associated with functional changes by kidneys in vivo. Renal clearance studies were conducted in anesthetized, volume-expanded male Sprague-Dawley rats receiving either saline (n = 9) or L-5-HTP (15 and 75 micrograms/min iv, n = 9). No change in mean arterial pressure was measured during infusions of L-5-HTP at either dose, whereas glomerular filtration rate (GFR), as measured by the clearance of inulin, and effective renal plasma flow (CPAH) decreased by 34 +/- 5% (mean +/- SE, P less than 0.001) and 26 +/- 7% (P greater than 0.07), respectively. Urine flow and sodium excretion decreased by 41 +/- 9% (P less than 0.01). Serotonin and 5-HTP were determined in urine and plasma using HPLC. High levels of 5-HTP were present in plasma, but not urine. Urinary serotonin increased in the rats receiving L-5-HTP without concomitant increases in plasma serotonin. More than 20% of the infused L-5-HTP was recovered in the urine as serotonin. The decarboxylase inhibitor carbidopa (20 micrograms/min) markedly reduced urinary serotonin excretion in the rats which received L-5-HTP and reversed the changes in GFR, CPAH, urine flow, and sodium excretion. Infusions of the amino acid precursor of L-5-HTP, L-tryptophan (n = 7), did not alter kidney function or increase plasma or urinary 5-HTP or serotonin levels. These results are consistent with the intrarenal formation of serotonin by renal decarboxylase with attendant alterations in renal hemodynamics and salt and water excretion.  相似文献   

5.
This study evaluated the effects of synthetic atrial natriuretic factor (ANF) on renal hemodynamics, urinary excretion of electrolytes, norepinephrine (NE), and dopamine (DA); and renal production of renin in anesthetized dogs. Following a bolus (1 micrograms/kg body weight) and infusion (0.1 microgram/kg/min) for 30 min, there was significant increase in urine flow (220 +/- 41%), glomerular filtration rate (72 +/- 14%), and urinary sodium excretion (170 +/- 34%). There was a decrease in renin secretory rate and the concentration ratio of urine NE to DA following ANF was decreased (p less than 0.05). These data suggest that ANF decreases renal production of NE and renin.  相似文献   

6.
We determined if nine precirrhotic unanaesthetized dogs with chronic bile duct ligation (CBDL) responded uniformly to atrial natriuretic peptide (ANF) by infusing this peptide sequentially over 8-12 weeks at 175 ng.kg-1.min-1 and observing the natriuretic response. ANF was administered every 2 weeks post-CBDL until the 8th week and given again during the cirrhotic phase with ascites present (10-12 weeks post-CBDL). Sodium balance studies were conducted at similar time intervals. During the control period and at weeks, 2, 6, and 8 post-CBDL all dogs responded to ANF with a significant change in sodium excretion (delta UNaV, 50-240 mu equiv./min). At these times, all dogs were in sodium balance. At week 4 and during the ascitic period, heterogeneity of response to ANF was observed. In the former interval, five dogs responded (delta UNaV,75-230 mu equiv./min) and four did not, while in the latter interval, five dogs responded (delta UNaV, 50-240 mu equiv./min) and three did not (one dog died). In both time periods, there was severe urinary sodium retention (daily UNaV, 11 +/- 3 and 2 +/- 1 mequiv./day, respectively) while the dogs were ingesting 45 mequiv.Na+/day. The heterogeneity of natriuretic response was not correlated to plasma immunoreactive ANF, renin, or aldosterone levels. Plasma volume was significantly expanded from control during both intervals. We conclude that there is transient sodium retention during the 4th week post-CBDL, and that this period is associated with the heterogeneity of natriuretic response to ANF, despite the absence of ascites or edema.  相似文献   

7.
After unilateral release of bilateral ureteral obstruction (BUO), there is a significant increase in renal vasoconstriction that accounts for the marked decrease in glomerular filtration rate and effective renal plasma flow seen in this setting. We examined the potential role of antidiuretic hormone (ADH), a vasoconstrictor of the renal circulation, on renal hemodynamics in female Sprague-Dawley rats with BUO of 24-hr duration. Rats with BUO had significantly higher plasma values of ADH 65.1 +/- 12.2 vs. 12.1 +/- 4.1 pg/ml), sodium (145.4 +/- 0.91 vs 138.6 +/- 1.06 mEq/liter), and osmolality (375.6 +/- 2.0 vs 310.1 +/- 3.6 mOsm/kg) than sham-operated rats. Rats with BUO pretreated with enalapril, an angiotensin-converting enzyme inhibitor, before obstruction had somewhat higher, but not significantly different, plasma values for ADH (84.6 +/- 20.8 pg/ml) than rats with BUO not given enalapril. Rats with unilateral ureteral obstruction of 24-hr duration had plasma levels of ADH (8.2 +/- 1.3) not different from those in sham-operated rats. Rats with BUO pretreated with a specific antagonist of the V1-type receptor for ADH had significantly greater values for the glomerular filtration rate (2.31 +/- 0.24 vs 1.44 +/- 0.08 ml/min/kg body wt) and the effective renal plasma flow (8.95 +/- 0.71 vs 3.81 +/- 0.44 ml/min/kg body wt) and significantly lower values for mean arterial pressure (140.3 +/- 2.0 vs 159.1 +/- 5.5 mm Hg) than did BUO rats not given the antagonist. The results indicate that high levels of ADH play an important role in the decrease in the glomerular filtration rate and effective renal plasma flow observed in rats with BUO of 24 hr. The significant increase in ADH levels after BUO of 24-hr duration may be due to an increase in osmotic stimulation as a consequence of hypernatremia. Activation of the renin-angiotensin axis, known to occur after BUO or unilateral ureteral obstruction of 24-hr duration, does not appear to have a role in the increased circulating levels of ADH.  相似文献   

8.
Cyclosporin A (CsA) alters the production of prostaglandins (PG) by the kidney. CsA causes an increase in renal vascular resistance, a decrease in renal blood flow, a decrease in glomerular filtration rate (GFR), and increases the renal production of the vasoconstrictor thromboxane. Recently, low dose CsA has been utilized in the treatment of refractory autoimmune diseases. To determine if low dose CsA administration could produce renal hemodynamic alterations and to determine if the thromboxane receptor antagonist L655,240 could prevent these alterations, we administered groups of rats either CsA, 5 mg/kg, subcutaneously and the L655,240 vehicle NaHCO3 (CsA-NaHCO3), or CsA and L655,240 (CsA-L655,240), or CsA vehicle and L655,240. The rats were administered the drugs for 7 days and then subjected to inulin and PAH clearances or kidneys were harvested for prostaglandin production studies. CsA significantly depressed GFR and renal plasma flow when compared to the L655,240 treated groups. There was no difference in inulin or PAH clearance between the CsA-L655,240 and CsA vehicle L655,240 groups. Glomerular prostaglandin production including thromboxane was depressed by CsA administration. No histologic alterations were noted in the glomeruli or the medullary portions of the kidney. We conclude that administration of low dose CsA, 5 mg/kg, for 7 days results in a decrease in renal blood flow and GFR without histologic alterations. Administration of the thromboxane receptor antagonist L655,240 prevents the renal hemodynamic alterations induced by CsA in this rat model.  相似文献   

9.
The potent neutral endopeptidase inhibitor SQ 28,603 (N-(2-(mercaptomethyl)-1-oxo-3-phenylpropyl)-beta-alanine) significantly increased excretion of sodium from 4.9 +/- 2.3 to 14.3 +/- 2.1 muequiv./min and cyclic 3',5'-guanosine monophosphate from 118 +/- 13 to 179 +/- 18 pmol/min after intravenous administration of 300 mumol/kg (approximately 80 mg/kg) in conscious female cynomolgus monkeys. SQ 28,603 did not change blood pressure or plasma atrial natriuretic peptide concentrations in the normal monkeys. In contrast, 1-h infusions of 3, 10, or 30 pmol.kg-1.min-1 of human atrial natriuretic peptide lowered blood pressure by -3 +/- 4, -9 +/- 4, and -27 +/- 3 mmHg (1 mmHg = 133.322 Pa), increased cyclic guanosine monophosphate excretion from 78 +/- 11 to 90 +/- 6, 216 +/- 33, and 531 +/- 41 pmol/min, and raised plasma atrial natriuretic peptide from 7.2 +/- 0.7 to 21 +/- 4, 62 +/- 12, and 192 +/- 35 fmol/mL without affecting sodium excretion. In monkeys receiving 10 pmol.kg-1.min-1 of atrial natriuretic peptide, 300 mumol/kg of SQ 28,603 reduced mean arterial pressure by -13 +/- 5 mmHg and increased sodium excretion from 6.6 +/- 3.2 to 31.3 +/- 6.0 muequiv./min, cyclic guanosine monophosphate excretion from 342 +/- 68 to 1144 +/- 418 pmol/min, and plasma atrial natriuretic peptide from 124 +/- 8 to 262 +/- 52 fmol/mL. In conclusion, SQ 28,603 stimulated renal excretory function in conscious monkeys, presumably by preventing the degradation of atrial natriuretic peptide by neutral endopeptidase.  相似文献   

10.
M Bunke  L Wilder  A Martin 《Prostaglandins》1992,43(4):351-360
Cyclosporin A (CsA) alters the production of prostaglandins (PG) by the kidney. CsA causes an increase in renal vascular resistance, a decrease in renal blood flow, a decrease in glomerular filtration rate (GFR), and increases the renal production of the vasoconstrictor thromboxane. Recently, low dose CsA has been utilized in the treatment of refractory autoimmune diseases. To determine if low dose CsA administration could produce renal hemodynamic alterations and to determine if the thromboxane receptor antagonist L655,240 could prevent these alterations, we administered groups of rats either CsA, 5 mg/kg, subcutaneously and the L655,240 vehicle NaHCO3 (CsA-NaHCO3), or CsA and L655,240 (CsA-L655,240), or CsA vehicle and L655,240. The rats were administered the drugs for 7 days and then subjected to inulin and PAH clearances or kidneys were harvested for prostaglandin production studies. CsA significantly depressed GFR and renal plasma flow when compared to the L655,240 treated groups. There was no difference in inulin or PAH clearance between the CsA-L655,240 and CsA vehicle L655,240 groups. Glomerular prostaglandin production including thromboxane was depressed by CsA administration. No histologic alterations were noted in the glomeruli or the medullary portions of the kidney. We conclude that administration of low dose CsA, 5 mg/kg, for 7 days results in a decrease in renal blood flow and GFR without histologic alterations. Administration of the thromboxane receptor antagonist L655,240 prevents the renal hemodynamic alterations induced by CsA in this rat model.  相似文献   

11.
Renal selenium excretion in sheep was measured during intravenous infusion of sodium selenite, and the post-infusion dynamics of Se levels in whole blood, plasma and red blood cells (RBC) were investigated for the next 5 days. The plasma Se level increased almost twenty fold with the infusion of Na2SeO3 (from 0.39 +/- 0.02 to 7.83 +/- 0.33 micromol x L(-1), P < 0.001) compared with the baseline value. The selenium concentration in urine (0.07 +/- 0.02 vs. 18.53 +/- 2.56 micromol x L(-1), P < 0.001), the amount of Se excreted (0.14 +/- 0.07 vs. 21.40 +/- 2.31 nmol x min(-1), P < 0.001) and the renal clearance of Se (0.1 9 +/- 0.03 vs. 3.01 +/- 0.34 mL x min(-1), P < 0.001) were found to be highly significantly elevated during selenite loading. The clearance measurements showed no changes in the urinary flow rate or in the glomerular filtration rate. During and at the end of infusion the highest Se level was attained in plasma, followed by whole blood and RBC. The plasma Se level fell rapidly within 10 min after the end of infusion, but the concentration of Se in RBC was stable up to the fourth hour, when it started to decrease too. On day 5 the Se concentrations in plasma, RBC and whole blood were found to be only slightly but still significantly higher than before the selenite infusion. The large disproportion between the infusion rate of Se (8.76 microg x min(-1)) and its renal excretion rate (1.69 microg x min(-1)) found in clearance measurements suggests low glomerular filtration of infused selenium, which might primarily be caused by the binding of selenite metabolites to blood constituents. The presented results confirm the low bioavailability to ruminants of Se from sodium selenite.  相似文献   

12.
The hypothesis that increases in plasma sodium induce natriuresis independently of changes in body fluid volume was tested in six slightly dehydrated seated subjects on controlled sodium intake (150 mmol/day). NaCl (3.85 mmol/kg) was infused intravenously over 90 min as isotonic (Iso) or as hypertonic saline (Hyper, 855 mmol/l). After Hyper, plasma sodium increased by 3% (142.0 +/- 0.6 to 146.2 +/- 0.5 mmol/l). During Iso a small decrease occurred (142.3 +/- 0.6 to 140.3 +/- 0.7 mmol/l). Iso increased estimates of plasma volume significantly more than Hyper. However, renal sodium excretion increased significantly more with Hyper (291 +/- 25 vs. 199 +/- 24 micromol/min). This excess was not mediated by arterial pressure, which actually decreased slightly. Creatinine clearance did not change measurably. Plasma renin activity, ANG II, and aldosterone decreased very similarly in Iso and Hyper. Plasma atrial natriuretic peptide remained unchanged, whereas plasma vasopressin increased with Hyper (1.4 +/- 0.4 to 3.1 +/- 0.5 pg/ml) and decreased (1.3 +/- 0.4 to 0.6 +/- 0.1 pg/ml) after Iso. In conclusion, the natriuretic response to Hyper was 50% larger than to Iso, indicating that renal sodium excretion may be determined partly by plasma sodium concentration. The mechanism is uncertain but appears independent of changes in blood pressure, glomerular filtration rate, the renin system, and atrial natriuretic peptide.  相似文献   

13.
Somatostatin has profound effects on both splanchnic and portal vascular beds. The effects of intravenous somatostatin (100 micrograms/h) on urinary volume, effective renal plasma flow, and glomerular filtration rate were compared with the effects of a control infusion of physiological saline in six normal subjects. Renal plasma flow and glomerular filtration rate were measured by primed constant isotope infusions of iodine-125 iodohippurate and chromium-51 edetic acid. Urinary volume, renal plasma flow, and glomerular filtration rate were measured during 20 minute clearance periods. During the control infusion urinary volume, renal plasma flow, and glomerular filtration rate remained essentially unchanged at 254 (SEM 3) ml/20 min, 568 (5) ml/min/1.73 m2, and 110 (2) ml/min/1.73 m2 respectively. From similar basal values the infusion of somatostatin led to a rapid decrease in all three variables. After 120 minutes of infusion of somatostatin urinary volume, renal plasma flow, and glomerular filtration rate were reduced to 148 (17) ml/20 min (p less than 0.01), 422 (7) ml/min/1.73 m2 (p less than 0.001), and 93 (3) ml/min/1.73 m2 (p less than 0.05) respectively. This effect on renal function should be borne in mind whenever somatostatin is used.  相似文献   

14.
The mechanisms by which atrial natriuretic peptide (ANP) produces a diuresis and natriuresis remain unclear. It has been suggested that the major if not sole mediator of ANP's renal effects is a hemodynamically induced increase in glomerular filtration rate (GFR). Data from clearance studies in anesthetized rabbits demonstrate that ANP administration can produce a significant increase in absolute and percentage sodium excretion (42.0 +/- 5.9----64.6 +/- 10.2 mu eq/min, P less than 0.01, and 1.97 +/- 0.28----3.12 +/- 0.35%, P less than 0.001, respectively) without increasing GFR (16.8 +/- 2.1----16.1 +/- 2.5 cc/min, P greater than 0.30). The natriuresis occurred despite a fall in renal plasma flow (RPF) (56.7 +/- 7.0----44.5 +/- 9.4 cc/min, P less than 0.01), a rise in filtration fraction (0.33 +/- 0.01----0.46 +/- 0.05, P less than 0.01), and an unchanged filtered load of sodium (2.28 +/- 0.27----2.16 +/- 0.32 mu eq/min, P greater than 0.10). Isolated tubular microperfusion studies demonstrated that ANP, present as a 10(-9) M concentration in the solution bathing perfused proximal straight tubules (PST), did not affect fluid flux (Jv) (0.38 +/- 0.07----0.41 +/- 0.07 nl/mm/min, P greater than 0.30) or phosphate reabsorption (Jp) (1.50 +/- 0.5----1.38 +/- 0.36 pmole/mm/min, P greater than 0.50). When ANP was infused into rabbits prior to harvesting the PSTs for isolated tubular microperfusion and the results were compared to tubules taken from control animals, there was again no effect on Jv (0.37 +/- 0.05 vs 0.42 +/- 0.05 nl/mm/min, P greater than 0.50) or Jp (2.41 +/- 0.27 vs 2.42 +/- 0.44 pmole/mm/min, P greater than 0.90). These findings suggest that ANP can inhibit sodium transport without increasing whole-kidney GFR or RPF, but does not directly inhibit transport in the proximal straight tubule.  相似文献   

15.
Previous studies have shown that administration of captopril to sodium-depleted rats decreases the glomerular filtration rate (GFR) and blunts the increase in glomerular prostacyclin synthesis normally occurring in response to sodium depletion. To clarify the relationship between these two responses, iloprost, a stable analogue of prostacyclin, was administered to Na-depleted, captopril-treated (LNC) rats. At a dosage not affecting systemic blood pressure (12.5 ng/kg/min), iloprost increased GFR in LNC rats by 25% (from 0.26 +/- 0.03 to 0.35 +/- 0.03 ml/min/100 g body wt, P less than 0.01), without significant effects on renal plasma flow. No effect was observed in control rats. The results suggest that altered prostacyclin synthesis could contribute to the decrease of GFR in this model.  相似文献   

16.
Previous studies have shown that atrial natriuretic factor (ANF) inhibits renin secretion whereas cilazapril blocks angiotensin II generation via converting enzyme inhibition. Both agents enhance renal excretory function. The present study was conducted to test whether the renin-angiotension system is involved in the ANF-induced renal effects. ANF was administered to anesthetized normal rats (n = 16) with or without a simultaneous infusion of cilazapril. Single bolus injections of ANF at doses of 2.5 micrograms/kg and 5.0 micrograms/kg significantly decreased mean arterial blood pressure by 6.8 +/- 2.3% and 9.4 +/- 2.2%, respectively. The corresponding increases in glomerular filtration rate were 5.6 +/- 3.7% and 8.4 +/- 2.8%, in absolute sodium excretion were 55.0 +/- 18.5% and 105.2 +/- 39.9%, and in urine flow were 24.8 +/- 9.3% and 35.6 +/- 14.6%. Intravenous infusion of cilazapril (33 micrograms/kg.min) reduced the arterial blood pressure, elevated the glomerular filtration rate and increased sodium and water excretion. The corresponding doses of ANF administration during continuous infusion of cilazapril further decreased blood pressure by 8.3 +/- 1.9% and 10.9 +/- 5.4%, respectively. However, there were no significant changes in the glomerular filtration rate and sodium and water excretion. The failure of ANF to exhibit a renal effect was irrelevant to the lowering blood pressure induced by cilazapril. These results suggest that reduced endogenous angiotensin II generation contributes to the renal, but not the hypotensive, effect of ANF.  相似文献   

17.
The effects of endothelin on renal hemodynamics and excretory functions were investigated in anesthetized dogs. Infusion of endothelin at a rate of 1 ng/kg.min resulted in a slight but significant decrease in renal blood flow and an increase in renal vascular resistance and filtration fraction. Endothelin at doses higher than 10 ng/kg.min significantly decreased cardiac output, glomerular filtration rate, urine volume, and urinary sodium and potassium excretion, whereas it increased systemic vascular resistance. Mean arterial pressure and heart rate showed a transient decrease and increase, respectively, at doses higher than 50 ng/kg.min. Plasma renin activity and plasma aldosterone concentrations were increased only at the dose of 100 ng/kg.min. These effects lasted for more than 60 min. These results suggest that endothelin may have an important role in the modulation of renal functions as well as in the modulation of systemic hemodynamics.  相似文献   

18.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

19.
Saline was infused intravenously for 90 min to normal, sodium-replete conscious dogs at three different rates (6, 20, and 30 micromol x kg(-1) x min(-1)) as hypertonic solutions (HyperLoad-6, HyperLoad-20, and HyperLoad-30, respectively) or as isotonic solutions (IsoLoad-6, IsoLoad-20, and IsoLoad-30, respectively). Mean arterial blood pressure did not change with any infusion of 6 or 20 micromol x kg(-1) x min(-1). During HyperLoad-6, plasma vasopressin increased by 30%, although the increase in plasma osmolality (1.0 mosmol/kg) was insignificant. During HyperLoad-20, plasma ANG II decreased from 14+/-2 to 7+/-2 pg/ml and sodium excretion increased markedly (2.3+/-0.8 to 19+/-8 micromol/min), whereas glomerular filtration rate (GFR) remained constant. IsoLoad-20 decreased plasma ANG II similarly (13+/-3 to 7+/-1 pg/ml) concomitant with an increase in GFR and a smaller increase in sodium excretion (1.9+/-1.0 to 11+/-6 micromol/min). HyperLoad-30 and IsoLoad-30 increased mean arterial blood pressure by 6-7 mm Hg and decreased plasma ANG II to approximately 6 pg/ml, whereas sodium excretion increased to approximately 60 micromol/min. The data demonstrate that, during slow sodium loading, the rate of excretion of sodium may increase 10-fold without changes in mean arterial blood pressure and GFR and suggest that the increase may be mediated by a decrease in plasma ANG II. Furthermore, the vasopressin system may respond to changes in plasma osmolality undetectable by conventional osmometry.  相似文献   

20.
Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 micrograms/min, i.v.), an alpha 1-adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (-67 +/- 9 vs. -33 +/- 8%), glomerular filtration rate (-60 +/- 9 vs. -7 +/- 20%), urine flow (-61 +/- 7 vs. -24 +/- 11%), sodium excretion (-51 +/- 15 vs. -32 +/- 21%), and fractional excretion of sodium (-50 +/- 9 vs. -25 +/- 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (-54 +/- 10 vs. -30 +/- 14%), glomerular filtration rate (-51 +/- 11 vs. -19 +/- 17%), urine flow (-55 +/- 10 vs. -39 +/- 10%), sodium excretion (-70 +/- 9 vs. -59 +/- 11%), and fractional excretion of sodium (-53 +/- 10 vs. -41 +/- 10%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号