首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Metabolism of 3 beta-hydroxy-5-cholenoic acid to chenodeoxycholic acid has been found to occur in rabbits and humans, species that cannot 7 alpha-hydroxylate lithocholic acid. This novel pathway for chenodeoxycholic acid synthesis from 3 beta-hydroxy-5-cholenoic acid led to a reinvestigation of the pathway for chenodeoxycholic acid from 3 beta-hydroxy-5-cholenoic acid in the hamster. Simultaneous infusion of equimolar [1,2-3H]lithocholic acid and 3 beta-hydroxy-5-[14C]cholenoic acid indicated that the 14C enrichment of chenodeoxycholic acid was much greater than that of lithocholic acid. Thus, in all these species, a novel 7 alpha-hydroxylation pathway exists that prevents the deleterious biologic effects of 3 beta-hydroxy-5-cholenoic acid.  相似文献   

2.
Biotransformations of 3-fluorophthalic acid have been investigated using blocked mutants of Pseudomonas testosteroni that are defective in the metabolism of phthalic acid (benzene-1,2-dicar-boxyfic acid). Mutant strains were grown with L-glutamic acid in the presence of 3-fluorophthalic acid as inducer of phthalic acid catabolic enzymes. Products that accumulated in the medium were isolated, purified and identified as the fluoroanalogues of those produced from phthalic acid by the same strains. The previously undescribed fluorochemicals cis-3-fluoro-4,5-dihydro-4,5-dihydroxyphthalic acid (VI) and 3-fluoro-4,5-dihydroxyphthalic acid (VII) have been obtained by biotransformation of 3-fluorophthalic acid, and 3-fluoro-5-hydroxyphthalic acid (X) from (VI) by freeze drying. In addition, samples of 2-fluoro-3,4-dihydroxybenzoic acid (2-fluoroprotocatechuic acid, VIII) and 3-fluoro-4,Sdi-hydroxybenzoic acid (5-fluoroprotocatechuic acid, IX) were obtained with a mutant deficient in the ring-fission enzyme, showing that the fluorine substituent in their precursor substrate (VII) is not recognized by the decarboxylase of the pathway, which shows no preference for which carboxyl group is removed. These studies of 3-fluorophthalic acid catabolism demonstrate the opportunities available for the production of novel fluorochemicals in reasonable yields by microbial transformations.  相似文献   

3.
The extent of oxidoreduction of the 3 alpha-, 7 alpha- and 12 alpha-hydroxyl groups in bile acids during the enterohepatic circulation in man was studied with the use of [3 beta-3H]-labeled deoxycholic acid and cholic acid, [7 beta-3H]-labeled cholic acid, and [12 beta-3H]-labeled deoxycholic acid and cholic acid. Each [3H]-labeled bile acid was given per os to healthy volunteers, together with the corresponding [24-14C]-labeled bile acid. The rate of oxidoreduction was calculated from the decrease in the ratio between 3H and 14C in the respective bile acid isolated from duodenal contents collected at different time intervals after administration of the labeled bile acids. The mean fractional conversion rate was found to be 0.29 day-1 for the 3 alpha-hydroxyl group in deoxycholic acid (n = 2), 0.18 day-1 for the 12 alpha-hydroxyl group in deoxycholic acid (n = 6), 0.09 day-1 for the 3 alpha-hydroxyl group in cholic acid (n = 3), 0.05 day-1 for the 7 alpha-hydroxyl group in cholic acid (n = 2), and 0.03 day-1 for the 12 alpha-hydroxyl group in cholic acid (n = 2). The extent of oxidoreduction of the 12 alpha-hydroxyl group in [12 beta-3H]-labeled deoxycholic acid given to two patients operated with subtotal colectomy and ileostomy was markedly reduced (less than 20% of normal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
N P Botting  M A Cohen  M Akhtar  D Gani 《Biochemistry》1988,27(8):2956-2959
3-Methylaspartate ammonia-lyase catalyzes the deamination of (2S)-aspartic acid 137 times more slowly than the deamination of (2S,3S)-3-methylaspartic acid but catalyzes the amination of fumaric acid 1.8 times faster than the amination of mesaconic acid [Botting, N.P., Akhtar, M., Cohen, M. A., & Gani, D. (1988) Biochemistry (preceding paper in this issue)]. In order to understand the mechanistic basis for these observations, the deamination reaction was examined kinetically with (2S)-aspartic acid, (2S,3S)-3-methylaspartic acid, (2S,3S)-3-ethylaspartic acid, and the corresponding C-3-deuteriated isotopomers. Comparison of the double-reciprocal plots of the initial reaction velocities for each of the three pairs of substrates revealed that the magnitude of the primary isotope effect on both Vmax and V/K varied with the substituent at C-3 of the substrate. 3-Methylaspartic acid showed the largest isotope effect (1.7 on Vmax and V/K), 3-ethylaspartic acid showed a smaller isotope effect (1.2 on Vmax and V/K), and aspartic acid showed no primary isotope effect at all. These results, which are inconsistent with earlier reports that there is no primary isotope effect for 3-methylaspartic acid [Bright, H. J. (1964) J. Biol. Chem. 239, 2307], suggest that for both 3-methylaspartic acid and 3-ethylaspartic acid elimination occurs via a predominantly concerted mechanism whereas for aspartic acid an E1cb mechanism prevails.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A coryneform bacterium that is able to utilize cis- and trans-3-chloroacrylic acid as sole carbon source for growth was isolated from freshwater sediment. The organism was found to produce two inducible dehalogenases, one specific for the cis- and the other for trans-3-chloroacrylic acid. Both dehalogenases were purified to homogeneity from cells induced for dehalogenase synthesis with 3-chlorocrotonic acid. The enzymes produced muconic acid semialdehyde (3-oxopropionic acid) from their respective 3-chloroacrylic acid substrate. No other substrates were found. The cis-3-chloroacrylic acid dehalogenase consisted of two polypeptide chains of a molecular weight 16.2 kDa. Trans-3-chloroacrylic acid dehalogenase was a protein with subunits of 7.4 and 8.7 kDa. The subunit and amino acid compositions and the N-terminal amino acid sequences of the enzymes indicate that they are not closely related.  相似文献   

6.
The mechanisms of the elimination of ammonia from (2S,3S)-3-methylaspartic acid, (2S)-aspartic acid and (2S,3R)-3-methylaspartic acid, catalysed by the enzyme L-threo-3-methylaspartase ammonia-lyase (EC 4.3.1.2) have been probed using 15N-isotope effects. The 15N-isotope effects for V/K for both (2S,3S)-3-methylaspartic acid and aspartic acid are 1.0246 +/- 0.0013 and 1.0390 +/- 0.0031, respectively. The natural substrate, (2S,3S)-3-methylaspartic acid, is eliminated in a concerted fashion such that the C(beta)-H and C(alpha)-N bonds are cleaved in the same transition state. (2S)-Aspartic acid appears to follow the same mechanistic pathway, but deprotonation of the conjugate acid of the base for C-3 is kinetically important and influences the extent of 15N-fractionation. (2S,3R)-3-Methylaspartic acid is deaminated via a stepwise carbocationic mechanism. Here we elaborate on the proposed model for the mechanism of methylaspartase and propose that a change in stereochemistry of the substrate induces a change in the mechanism of ammonia elimination.  相似文献   

7.
Formation of indole-3-acetic acid-aspartate in detached primary leaves of cowpea (Vigna sinensis Endl.) floating on (14)C-indole-3-acetic acid (3 muc; 3.15 mum, phosphate-citrate buffer, pH 4.75), almost doubled when leaves were pretreated with 31.5 mum(12)C-indole-3-acetic acid for 17 hr and then transferred to (14)C-indole-3-acetic acid for 4 hours as compared with leaves preincubated in buffer only. When leaves were preincubated with ethylene (11.0 and 104 mul/l) instead of (12)C-indole-3-acetic acid, no induction of indole-3-acetylaspartic acid formation was observed, and the rate of indole-3-acetylaspartic acid formation decreased as compared with control leaves. Rhizobitoxine (1.87 mum) inhibited indole-3-acetic acid-induced ethylene production but did not prevent the formation of indole-3-acetylaspartic acid. In view of the similarity of these results and those previously obtained with alpha-naphthaleneacetic acid, it is concluded that ethylene has no role in the auxin-induced indole-3-acetylaspartic acid formation in cowpea leaves.  相似文献   

8.
分别利用葡萄糖或葡萄糖酸钠与十一碳酸、月桂酸与十一碳酸为混合碳源进行嗜水气单孢菌 (Aeromonashydrophila)菌株 4AK4的摇瓶培养 ,实现了含有 3 羟基戊酸 (3HV)单体的聚羟基脂肪酸酯的微生物合成。当使用葡萄糖或葡萄糖酸钠与十一碳酸为混合碳源时 ,野生型A .hydrophila 4AK4及含有 3 羟基丁酸辅酶A合成基因phaA和phaB的重组A .hydrophila 4AK4 (pTG01)能够合成-3-羟基丁酸(3HB)与-3HV的共聚物 ,且葡萄糖或葡萄糖酸钠与十一碳酸比例为 1∶1时最利于细胞生长和PHA的积累。当使用月桂酸和十一碳酸为混合碳源时 ,A .hydrophila4AK4能够合成-3HB、3HV与 β-羟基己酸 (3HHx)的共聚物 ,且随着混合碳源中十一碳酸的含量增加 ,A .hydrophila4AK4合成的PHA中-3HV的比例增加 ,而-3HB和-3HHx的比例降低.  相似文献   

9.
 A recombinant strain of Pseudomonas putida GPp104 (pHP1014::E146), which expressed the polyhydroxyalkanoic acid (PHA) synthase of Thiocapsa pfennigii exhibiting an unusual substrate specificity at a high level was incubated in two-stage batch or fed-batch accumulation experiments with 5-hydroxyhexanoic acid (5HHx) as carbon source in the second cultivation phase, copolyesters of 3-hydroxybutyric acid (3HB) plus 5HHx, or of 3HB, 3-hydroxyhexanoic acid (3HHx) plus 5HHx were accumulated as revealed by gas-chromatographic and 13C-NMR spectroscopic analysis. When the recombinant P. putida GPp104 was incubated with 4-hydroxyheptanoic acid (4HHp) as carbon source in the second cultivation phase, a copolyester consisting of 3HB, 3-hydroxyvaleric acid and 3- and 4-hydroxyheptanoic acid accumulated. Providing 4-hydroxyoctanoic acid as carbon source in the second cultivation phase led to the accumulation of a polyester that contained 1–2 mol% 4-hydroxyoctanoic acid besides 3-hydroxyoctanoic acid, 3HHx, 3-hydroxyvaleric acid and 3HB. In addition to PHA containing these new constituents, PHA with 4-hydroxyvaleric acid was accumulated from laevulinic acid. Eleven strains from five genera have been also analysed for their ability to utilize different carbon sources for colony growth, which might serve as potential precursors for the biosynthesis of PHA with unusual constituents. Although most of the carbon sources were utilized by some strains for colony growth, accumulation experiments gave no evidence for the accumulation of new PHA by these wild-type strains. Received: 22 April/Received revision: 23 May 1996/Accepted: 2 June 1996  相似文献   

10.
3-Amino-L-tyrosine was found to be a substrate of mushroom tyrosinase, contrary to what had previously been reported in the literature. A series of amino derivatives of benzoic acid were tested as substrates and inhibitors of the enzyme. 3-Amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid and 3,4-diaminobenzoic acid were oxidized by this enzyme, as previously reported for Neurospora crassa tyrosinase, but 4-aminobenzoic acid and 3-aminobenzoic acid were not. Interestingly, 3-amino-4-hydroxybenzoic acid was oxidized five times faster than 4-amino-3-hydroxybenzoic acid, confirming the importance of proton transfer from the hydroxyl group at C-4 position. All compounds inhibited the monophenolase activity but their effect on the diphenolase activity was small or negligible. 3-Amino-4-hydroxybenzoic acid was a stronger inhibitor than 4-amino-3-hydroxybenzoic acid, indicating their different binding affinity to the oxy form of the enzyme. Both, however, were weaker inhibitors than 3-amino-L-tyrosine, 4-methoxy-o-phenylenediamine and 3,4-diaminobenzoic acid, which was the strongest inhibitor from among the compounds tested. These results show that the relative positioning of the amino group and the hydroxy group in o-aminophenols with respect to the side chain is important both for binding to the dicopper center and for catalysis.  相似文献   

11.
A gas chromatographic–mass spectrometric method was developed for the quantitative analysis of the three Di(2-ethylhexyl)phthalate (DEHP) metabolites, 2-ethylhexanoic acid, 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in urine. After oximation with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride and sample clean-up with Chromosorb P filled glass tubes, all three organic acids were converted to their tert.-butyldimethylsilyl derivatives. Quantitation was done with trans-cinnamic acid as internal standard and GC–MS analysis in the selected ion monitoring mode (SIM). Calibration curves for all three acids in the range from 20 to 1000 μg/l showed correlation coefficients from 0.9972 to 0.9986. The relative standard deviation (RSD) values determined in the observed concentration range were between 1.3 and 8.9% for all three acids. Here we report for the first time the identification of 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in human urine next to the known DEHP metabolite 2-ethylhexanoic acid. In 28 urine samples from healthy persons we found all three acids with mean concentrations of 56.1±13.5 μg/l for 2-ethylhexanoic acid, 104.8± 80.6 μg/l for 2-ethyl-3-hydroxyhexanoic acid and 482.2± 389.5 μg/l for 2-ethyl-3-oxohexanoic acid.  相似文献   

12.
Preparation of some biologically important keto bile acids is described. Advantage is taken of the preferential ketalization of 3-oxo group in bile acids over 7- and 12-oxo groups for the selective reduction of these keto groups. The method was found to be specially useful for preparation of 7 beta-, 12 alpha, and 12 beta-[3H]-3-oxo bile acids. Improved methods are also described for the preparation of epimers of naturally occurring bile acids at C-3, C-7, and C-12. 3 beta-Hydroxy bile acids (iso-bile acids) were prepared with the use of diethylazodicarboxylate/triphenylphosphine/formic acid. Iso-bile acids were obtained in excellent yields (80-95%) except during synthesis of isoursodeoxycholic acid (yield, 50%). Isoursodeoxycholic acid was, however, prepared in very good yield via epimerization of 3 alpha-hydroxyl group in 7-oxolithocholic acid followed by stereoselective reduction of 7-oxo group. A highly efficient method for the reduction of 7-oxo and 12-oxo groups was developed. Thus, 7-oxolithocholic acid and 7-oxoisolithocholic acid on reduction with potassium/tertiary amyl alcohol yielded ursodeoxycholic acid and isoursodeoxycholic acid in yields of 96% and 94%, respectively, while reduction of 7-oxodeoxycholic acid resulted in ursocholic acid in 93% yield. In a similar manner, reduction of 12-oxolithocholic acid and 12-oxochenodeoxycholic acid yielded 3 alpha, 12 beta-dihydroxy-5 beta-cholanoic acid (lagodeoxycholic acid; 92% yield) and 3 alpha, 7 alpha, 12 beta-trihydroxy-5 beta-cholanoic acid (lagocholic acid, 86% yield).  相似文献   

13.
A new metabolite of the plant growth substance indole-3-acetic acid has been extracted from Zea mays seedlings and characterized as the 7'-O-beta-D-glucopyranoside of 7-hydroxy-2-oxindole-3-acetic acid. This compound was the major product formed from [5-3H] 2-oxindole-3-acetic acid, incubated with intact plants or root and coleoptile sections. Identification was by gas chromatography-mass spectrometry of the trimethylsilyl derivative and by analysis of the hydrolysis products. A synthesis is reported for 7-hydroxy-2-oxindole-3-acetic acid. These results and prior work demonstrate the following catabolic route for indole-3-acetic acid in Zea: indole-3-acetic acid----2-oxindole-3-acetic acid----7-hydroxy-2-oxindole-3-acetic acid----7-hydroxy-2-oxindole-3-acetic acid glucoside.  相似文献   

14.
With partially purified enzyme preparations from cell-free extracts of Pseudomonas fluorescens, 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid are substrates for glucose oxidase (EC 1.1.3.4.) and gluconate dehydrogenase (EC 1.1.99.3), with K-m values 18.2 mM and 11.8 mM, respectively. The same enzymes that oxidize glucose and gluconic acid probably oxidize 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid. The latter fluorinated carbohydrates and the presumed formation of 3-deoxy-3-fluoro-2-keto-D-gluconic acid, which has been isolated as a calcium salt and characterizied, are not substrates for gluconokinase (EC 2.7.1.12). Both 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid act as competitive inhibitors of this enzyme preparation for gluconate, with K-i values 47.5 mM and 14.8 mM, respectively.  相似文献   

15.
Functional characterization of the fatty acid desaturase genes and seed-specific promoters is prerequisite for altering the unsaturated fatty acid content of oilseeds by genetic manipulation. The ω-6 fatty acid desaturase (FAD2) and ω-3 fatty acid desaturase (FAD3) catalyze extra-plastidial desaturation of oleic acid to linoleic acid and linoleic acid to linolenic acid, respectively. These are major constituents in seed storage oils. Here, we report the complementation of a perilla linoleic acid desaturase (PrFAD3) cDNA under the seed-specific sesame FAD2 (SeFAD2) promoter in the Arabidopsis fad3 mutant. PrFAD3 is functionally active and the SeFAD2 promoter is applicable for modifying fatty acid composition in developing seeds. Transient expression of the GUS gene under that promoter in the developing seeds and leaves of sesame, soybean, and corn via microprojectile bombardment indicated that the SeFAD2 promoter likely will be useful for altering the seed phenotypes of dicot and monocot crops.  相似文献   

16.
Kim HH  Kim K 《FEBS letters》2003,550(1-3):190-194
Abietic acid is one of the terpenoids, which are multifunctional natural compounds. It has been reported that abietic acid suppresses effects on inflammation. However, the mechanism underlying the anti-inflammatory effects remains unclear. The present work indicates that abietic acid suppresses the protein expression of tumor necrosis factor- and cyclooxygenase 2, which are involved in inflammation, in lipopolysaccharide-stimulated macrophages. Moreover, this effect resembles that of thiazolidinedione, a synthetic peroxisome proliferator-activated receptor-γ (PPARγ) ligand. Indeed, abietic acid activates PPARγ in luciferase reporter assays. The activity of abietic acid induces PPARγ target gene expression in RAW264.7 macrophages and 3T3-L1 adipocytes. These data indicate that abietic acid is a PPARγ ligand and that its anti-inflammatory effect is partly due to the activation of PPARγ in stimulated macrophages. The present work suggests a novel possibility that abietic acid, a naturally occurring compound, can be used not only for anti-inflammation but also for regulating lipid metabolism and atherosclerosis.  相似文献   

17.
Treatment of 18 beta-glycyrrhizic acid with a methanolic solution of HCl resulted in a 1:1 mixture of methyl esters of 18 alpha- and 18 beta-glycyrrhetinic acids. Benzoylation of the mixture led to methyl esters of 3-benzoyl-18 alpha-glycyrrhetinic acid and 3-benzoyl-18 beta-glycyrrhetinic acid, which were separated by chromatography on silica gel. 18 alpha-Glycyrrhetinic acid was prepared by alkaline hydrolysis of methyl 3-benzoyl-18 alpha-glycyrrhetinate and was further used for the syntheses of 3-keto-18 alpha-glycyrrhetinic acid and methyl esters of 18 alpha-glycyrrhetinic acid and 3-keto-18 alpha-glycyrrhetinic acid.  相似文献   

18.
The activities of the enzymes glycerol-3-phosphate dehydrogenase and fatty acid synthase are inhibited by palmitoyl-coenzyme A and oleate. The two isoforms of fatty acid binding proteins (PI 6.9 and PI 5.4) enhance the activities of glycerol-3-phosphate dehydrogenase and fatty acid synthase in the absence of palmitoyl-coenzyme A or oleate and also protect them against palmitoyl-coenzyme A or oleate inhibition. Levels of fatty acid binding proteins, the activities of the enzymes fatty acid synthase and glycerol-3-phosphate dehydrogenase increase with gestation showing a peak at term. However, the activity of fatty acid synthase showed the same trend up to the 30th week of gestation and then declined slightly at term. With the advancement of pregnancy when more lipids are required for the developing placenta, fatty acid binding proteins supply more fatty acids and glycerol-3-phosphate for the synthesis of lipids. Thus a correlation exists between glycerol-3-phosphate dehydrogenase, fatty acid synthase and fatty acid binding proteins in developing human placenta.  相似文献   

19.
The electron transfer reactions between the trichloromethylperoxyl radical (Cl3COO·) and hydroxycinnamic acid derivatives, including chlorogenic acid, sinapic acid, caffeic acid, ferulic acid and 3,4-(methylenedioxy)cinnamic acid, have been studied by pulse radiolysis. The hydroxycinnamic acid derivatives, especially sinapic acid, are identified as good antioxidants for reduction of Cl3COO· via electron transfer reactions. From buildup kinetic analysis of phenoxyl radical, the rate constant for reaction of Cl3COO· with sinapic acid has been determined to be 8.2 × 107 dm3 mol-1 s-1, while the rate constants of electron transfer from other hydroxycinnamic acid derivatives to Cl3COO· were obtained to be about 2 × 107dm3 mol-1 s-1. The reaction of 3,4-(methylenedioxy)cinnamic acid with Cl3COO· was investigated as an evidence for the electron transfer mechanism.  相似文献   

20.
Indolepyruvate decarboxylase, a key enzyme for indole-3-acetic acid biosynthesis, was found in extracts of Enterobacter cloacae. The enzyme catalyzes the decarboxylation of indole-3-pyruvic acid to yield indole-3-acetaldehyde and carbon dioxide. The enzyme was purified to apparent homogeneity from Escherichia coli cells harboring the genetic locus for this enzyme obtained from E. cloacae. The results of gel filtration experiments showed that indolepyruvate decarboxylase is a tetramer with an M(r) of 240,000. In the absence of thiamine pyrophosphate and Mg2+, the active tetramers dissociate into inactive monomers and dimers. However, the addition of thiamine pyrophosphate and Mg2+ to the inactive monomers and dimers results in the formation of active tetramers. These results indicate that the thiamine pyrophosphate-Mg2+ complex functions in the formation of the tetramer, which is the enzymatically active holoenzyme. The enzyme exhibited decarboxylase activity with indole-3-pyruvic acid and pyruvic acid as substrates, but no decarboxylase activity was apparent with L-tryptophan, indole-3-lactic acid, beta-phenylpyruvic acid, oxalic acid, oxaloacetic acid, and acetoacetic acid. The Km values for indole-3-pyruvic acid and pyruvic acid were 15 microM and 2.5 mM, respectively. These results indicate that indole-3-acetic acid biosynthesis in E. cloacae is mediated by indolepyruvate decarboxylase, which has a high specificity and affinity for indole-3-pyruvic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号