首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational preferences of helix foldamers having different sizes of the H‐bonded pseudocycles have been studied for di‐ to octa‐γ2,3‐peptides based on 2‐(aminomethyl)cyclohexanecarboxylic acid (γAmc6) with a cyclohexyl constraint on the Cα–Cβ bond using density functional methods. The helical structures of the γAmc6 oligopeptides with homochiral configurations are known to be much stable than those with heterochiral configurations in the gas phase and in solution (chloroform and water). In particular, it is found that the (P/M)?2.514‐helices are most preferred in the gas phase and in chloroform, whereas the (P/M)?2.312‐helices become most populated in water due to the larger helix dipole moments. As the peptide sequence becomes longer, the helix propensities of 14‐ and 12‐helices are found to increase both in the gas phase and in solution. The γAmc6 peptides longer than octapeptide are expected to exist as a mixture of 12‐ and 14‐helices with the similar populations in water. The mean backbone torsion angles and helical parameters of the 14‐helix foldamers of γAmc6 oligopeptides are quite similar to those of 2‐aminocyclohexylacetic acid oligopeptides and γ2,3,4‐aminobutyric acid tetrapeptide in the solid state, despite the different substituents on the backbone. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 87–95, 2014.  相似文献   

2.
Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. We found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O → CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO, whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid.  相似文献   

3.
We present ab-initio periodic Hartree–Fock calculations (crystal program) of small molecules on TiO2 and MgO. The adsorption of the molecules may be molecular or dissociative. This depends on their acid and basic properties in the gas phase. For the molecular adsorption, the molecules are adsorbed as bases on Ti(+IV) sites, the adsorption energies correlate with the proton affinities. The dissociations on the surface correlate with the gas phase cleavages: thus, the dissociation of MeOH leads to a preferential basic cleavage (the fragment HO– is adsorbed on a Ti+4 ion and the fragment Me+ is adsorbed on a O2– ion of the oxide). The opposite result is obtained with MeSH. Another important factor is the adsorbate–adsorbate interaction: favorable cases are a sequence of H-bonds for the hydroxyl groups resulting from the water dissociation and the mode of adsorption for the ammonium ions. Lateral interactions also force the adsorbed CO2 molecules to bend over the surface so that their mutual orientation resembles the geometry of the CO2 dimer. With respect to water adsorption, MgO appears to be a basic oxide. As experimentally observed, NH3 adsorbs preferentially on TiO2 and CO2 on MgO. However, this difference of reactivity should not be expressed in terms of acid vs. basic behaviour but in terms of hard and soft acidity. The MgO surface is a 'soft' acidic surface that reacts preferentially with the soft base, CO2.  相似文献   

4.
The paper presented demonstrates the calibration of a silicone membrane probe for measurement of hydrogen sulphide in liquid and gas phase. The probe is connected to a quadrupole mass spectrometer as detector. The calibration of the probe results in linear calibration functions for different liquids and the gas phase. An example of the application of the measuring device for on-line measurement is reported for an experiment where sulphide is precipitated as iron sulphide by the addition of ferrous chloride. As a consequence of the addition of ferrous chloride, the concentration of H2S in the biogas rapidly decreases from 4.2% to 1.0% (by volume). The inhibition of the anaerobic treatment process is calculated on the basis of the reduction of dissolved total organic carbon before and during the experiment. The reduction of dissolved total organic carbon before the experiment starts is constant at 60%, rising to a maximum of 70% during the addition of FeCl2. The difference in the conversion rate corresponds to an inhibition of about 14%. The gas production increases from 7.51 l–1 day–1 to 8.51 l–1 day–1. This inhibition observed before the addition of FeCl2 is caused by 65 mg/l undissociated hydrogen sulphide in the liquid phase as calculated from the data obtained after precipitation of sulphide as zinc sulphide. The data show clearly that the conversion of acetic acid to methane is inhibited by dissolved H2S. The concentration of acetic acid drops sharply from about 25 mM to 15 mM after the FeCl2 dosage has been started. The concentration of propionic acid decreases slightly from 12 mM to 9 mM. Most of the iron introduced during the experiment is immediately precipitated. The maximum concentration of dissolved iron measured in the effluent is 93 mg/l.  相似文献   

5.
The relative intensities of the CH stretching vibrations are used to study the interaction of lecithin liposomes with valinomycin, a mobile carrier for alkali ions. In the case of dipalmitoyl lecithin liposomes, the lipid phase transition is not significantly affected by valinomycin. However, in dimyristoylphosphatidylcholine liposomes, the phase transition is broadened by the addition of 1 mol% valinomycin even at low K+ concentrations. This indicates that the carrier interacts with the hydrophobic core of the bilayer. In addition, these experiments showed that the lipid phase transitions which are reflected by the methylene groups and the terminal methyl groups are nearly equivalent. Therefore a reevaluation of the assignment of the CH stretching bands seemed necessary. Our Raman spectroscopic investigation of ω-deuterated dipalmitoyl lecithin liposomes improves the assignment of CH stretch vibrations to methylene and methyl groups. The deuteration displaces the methyl group vibrations to the 2050–2250 cm?1 region and produces gross intensity changes of the bands at 2883 and 2936 cm?1. These changes lead to the conclusion that both bands arise from vibrations which can be attributed simultaneously to the methylene and methyl groups of the fatty acid chains. The displacement of the CH3 group vibrations from their original positions enhances the intensity ratios (per centimeter), 28832847 and 29362847, for the CH2- groups which are used to monitor the lipid phase transition, and implies that the contributions of the CH3 groups to the phase transition curves are unimportant. Our finding that the -CD3 groups reflect no phase transition supports this statement.  相似文献   

6.
The photochemical reaction of HCN at 184.9 nm is studied in the gas phase. (CN)2, H2, CH4, NH3, N2H4, C2H6, and CH3NH2 are identified as gas phase products, and a reaction mechanism is proposed. HCN polymers** are also obtained as solid reaction products, and their structure is investigated by Infrared Spectroscopy, UV-Visible Spectroscopy, Mass Spectrometry, and Amino acid Analysis. The process and nature of the formation of the polymers are discussed.  相似文献   

7.
Summary Resting cells of a formate-utilizing methanogen (strain HU) were used as a biocatalyser for formic acid production from H2 and bicarbonate. In the presence of methyl viologen, a potent inhibitor of methanogenesis, the cells could accumulate formic acid in the reaction mixture, whereas methane was produced in the absence of the inhibitor. Under optimal conditions (pH 8.0, 32°C, 100% H2 gas phase), 674 mmol·l-1 of formic acid (31 g·l-1 yield; 33% conversion of bicarbonate) was obtained at about 0.7 atm of gas pressure. When the reaction was carried out in an ultrafiltration vessel with a hydrogen pressure of 3 atm, a final product concentration of 1.02 mol·l-1 (47 g·l-1 yield, 51% conversion) could be obtained, indicating that the hydrogen lyase system of this methanogen has a high tolerance to formic acid, bicarbonate and hydrogen. The results obtained in this work open a new perspective for the utilization of methanogens for processes other than methane production.  相似文献   

8.
Ammonia (NH3) is the third most abundant N species in the atmosphere and, due to various natural and anthropogenic sources, can reach high concentrations in some areas. While some plants show effects of toxicity, others are capable of using this N-form and grow well without any utilization of soil-N. Acquisition of atmospheric NH3 will affect the acid-base balance of the plants as absorption and dissolution causes an alkalinisation (production of OH?) and assimilation of NH3 results in an acidification (generation of H+). As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve H+/OH? extrusion into the media via roots and transport of (in)organic ions between roots and above-ground parts of the plant. Our aim therefore was to assess NH3 acquisition by Lolium perenne and to study the effects of gas phase NH3 on growth, acid-base balance and mineral composition of the plants. The experiments therefore included application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots, from which the amount of gas phase NH3 acquisition could be quantified. Analysis of the mineral composition provided data for calculation of acid-base balance as well as for water use efficiencies of the plants. The results indicate that over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3 as demonstrated by increases in growth and in N and C use efficiencies. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The results of the experiments are discussed in relation to possible acid-base regulation mechanisms of the whole plant.  相似文献   

9.
Cost-effective technologies are needed to reach the international greenhouse gas (GHG) reduction targets in many fields, including waste and biomass treatment. This work reports the effects of CO2 capture from a combustion flue gas and its use in a newly-patented, two-phase anaerobic digestion (TPAD) process, to improve energy recovery and to reduce CO2 emissions. A TPAD process, fed with urban wastewater sludge, was successfully established and maintained for several months at pilot scale. The TPAD process with injection of CO2 exhibits efficient biomass degradation (58% VSS reduction), increased VFA production during the acidogenic phase (leading to VFA concentration of 8.4 g/L) and high biomethane production (0.350 Sm3/kgSSV; 0.363 Sm3/m3react·d). Moreover, CO2 intake in the acid phase has a positive impact on the overall GHG balance associated to biomethane production, and suggests an improved solution for both emission reduction and biomass conversion into biomethane.  相似文献   

10.
Removal of toluene in waste gases using a biological trickling filter   总被引:12,自引:0,他引:12  
The removal of toluene from waste gas was studied in a trickling biofilter. A high level of water recirculation (4.7 m h–1) was maintained in order to keep the liquid phase concentration constant and to achieve a high degree of wetting. For loads in the range from 6 to 150 g m–3 h–1 the maximum volumetric removal rate (elimination capacity) was 35±10 g m–3 h–1, corresponding to a zero order removal rate of 0.11±0.03 g m–2 h–1 per unit of nominal surface area. The surface removal was zero order above the liquid phase concentrations of approximately 1.0 g m–3, corresponding to inlet gas concentrations above 0.7–0.8 g m–3. Below this concentration the surface removal was roughly of first order. The magnitude of the first order surface removal rate constant, k1A , was estimated to be 0.08–0.27 m h–1 (k1A a=24–86 h–1). Near-equilibrium conditions existed in the gas effluent, so mass transfer from gas to liquid was obviously relatively fast compared to the biological degradation. An analytical model based on a constant liquid phase concentration through the trickling filter column predicts the effluent gas concentration and the liquid phase concentration for a first and a zero order surface removal. The experimental results were in reasonable agreement with a very simple model valid for conditions with an overall removal governed by the biological degradation and independent of the gas/liquid mass transfer. The overall liquid mass transfer coefficient, KLa, was found to be a factor 6 higher in the system with biofilm compared to the system without. The difference may be explained by: 1. Difference in the wetting of the packing material, 2. Mass transfer occurring directly from the gas phase to the biofilm, and 3. Enlarged contact area between the gas phase and the biofilm due to a rough biofilm surface.  相似文献   

11.
《Free radical research》2013,47(4-5):245-252
To find experimental conditions to selectively study the propagation phase of lipoperoxidation we studied the lipoperoxidation, catalyzed by FeCl2, of liposomes in a buffering condition where Fe2+ autoxidation and oxygen active species generation does not occur. Liposomes from egg yolk phosphatidylcholine. prepared by vortex mixing, do not oxidize Fe2+: on the contrary they oxidize Fe2+ when prepared by ultrasonic irradiation. Dimyristoyl phosphatidylcholine liposomes prepared by ultrasonic irradiation do not oxidize Fe2+. During sonication polyunsaturated fatty acid residues autoxidize and lipid hydroperoxides (LOOH) are generated. Only when LOOH are present in the liposimes Fe2+ oxidizes and its rate of oxidation depends on the amount of LOOH in the assay. The reaction results in the generation of both LOOH and thiobarbituric acid reactive material (TBAR): it is inhibited by butylated hydroxytoluene and has a acidic pH optimum; it is not inhibited by catalase and OH' scavengers. The reaction studied. thus, appears to be the chain branching and propagation phase of lipoperoxidation. When we studied the dependence of Fe2+ oxidation, LOOH and TBAR generation on FeCl2 concentration, we observed that at high FeCl2 concentrations the termination phase of lipoperoxidation was prevalent. Thus. by selecting the appropriate FeCl2 concentration the proposed experimental system allows study of either the propagation or the termination phase of lipoperoxidation.  相似文献   

12.
Abstract. Changes in the discontinuous gas exchange cycle of pupal beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), exposed or not to Cry1C Bacillus thuringiensis toxin, are examined against developmental age (1–7 days) and at different temperatures (10–25 °C) using flow through respirometry. Both exposed and nonexposed pupae exhibit discontinuous gas exchange, but only at 10 °C; the frequency of cyclic release of CO2 increases with increasing temperatures. The three phases of the discontinuous gas exchange cycle are distinct for both treatment groups. However, the duration of each phase is significantly greater for pupae exposed previously to toxin. The closed phase is 40 ± 14% longer, the flutter phase 23 ± 19% longer, and the open phase is 28 ± 12% longer when pupae were exposed to toxin. Respiratory water loss is 4.5 ± 1.3% for toxin exposed pupae and 2.1 ± 2.4% for unexposed pupae. Furthermore, the exposed pupae have significantly greater cuticular permeability (26.01 ± 1.9 µg cm−2 h−1 mmHg−1) than the nonexposed pupae (9.64 ± 0.9 µg cm−2 h−1 mmHg−1). However, in both strains, cuticular transpiration (>93%) far exceeds respiratory transpiration. Overall, total water loss is significantly greater in pupae whose larvae are exposed to toxin compared with pupae from nontreated larvae. Toxin exposed pupae have a mean cycle duration of 60 ± 2.5 min whereas that of nonexposed pupae is 42 ± 1.8 min.(ml g−1 h−1) of the open phase is greater earlier in pupal life followed by a minimum at mid-pupal stage and an increase at late-pupal development in both treatment groups. Combining all 7 days, closed, flutter and open phase (ml g−1 h−1), pupae exposed to toxin produce significantly more CO2 during each phase. On average, toxin exposed pupae produce 52 ± 12, 43 ± 10 and 15 ± 37% more CO2 than the untreated pupae during the closed, flutter and open phases, respectively. Therefore, the present study reinforces the need to use insects of similar developmental age in studies of insect respiration patterns and energy metabolism.  相似文献   

13.
Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.

Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  相似文献   

14.
A new theory and experimental method was developed to measure the diffusion resistance to CO2 in the gas phase of mesophyll leaf tissue. Excised leaves were placed in a chamber and their net evaporation and CO2 assimilation rates measured at two different ambient pressures. These data were used to calculate CO2 gas phase diffusion resistances. A variety of field grown leaves were tested and the effects of various experimental errors considered. Increasing the gas phase diffusion resistance decreased transpiration more than it decreased CO2 assimilation. It was concluded that gas phase diffusion resistance associated with CO2 assimilation may sometimes be 100 or 200 s·m-1 greater than the resistance implied by transpiration rates. This may be due to longer path lengths for the CO2 diffusion, constricted in places by the shape and arrangement of mesophyll cells.  相似文献   

15.
The characterization by capillary gas chromatography-mass spectrometry of the plant hormones indole-3-acetic acid and the gibberellins GA1 and GA3 from chemically-defined cultures of Acetobacter diazotrophicus and Herbaspirillum seropedicae is reported. Both bacteria are endophytic in gramineae species where they promote growth and yield. Quantification was also done by selected ion monitoring with [17,17-2H2]-Gibberellin A1, [17,17-2H2]-Gibberellin A3 and [13C6]-indole-3-acetic acid as internal standards. The results presented show the importance of studying phytohormonal production when the interrelationships between plants and microorganisms are analyzed and may help explain the beneficial effects of endophytic bacteria to the host plant, as has been demonstrated previously for Azospirillum spp.  相似文献   

16.
Clostridium thermocellum produces ethanol, acetate, H2, and CO2 as major fermentation products from cellulose and cellobiose. The performance of three strains of this microorganism was studied to assess the potential use in producing ethanol directly from cellulosic fiber. Depending on the bacterial strain, an ethanol/acetate product ratio from 1 to as high as 3 was observed in unstirred cultures. Vigorous stirring during growth resulted in a threefold decrease in the ethanol/acetate ratio. The H2 content in the unstirred culture broth was three times greater than that in the stirred one. Addition of exogenous H2 to the gas phase during growth increased the ethanol/acetate ratio much more in the stirred than in the unstirred fermentations. The addition of sufficient H2 to the gas phase almost relieved the effect of stirring, and the ethanol/acetate ratio approached that in the unstirred condition. Addition of tritium to the gas phase of the culture resulted in the formation of tritiated water (3H2O), which indicates that C. thermocellum possesses hydrogenase(s) that catalyzes the reverse reaction. The rate of 3H2O formation was about three times higher in the stirred culture than in the unstirred culture. These results demonstrate that the H2 concentration in the broth plays an important role in the product formation. The H2 supersaturation present in the unstirred cultures is responsible for the observed effect of stirring. A hydrogen feedback control mechanism regulating the relative concentrations of reduced and oxidized electron carriers is proposed to account for the effect of hydrogen on the metabolite distribution.  相似文献   

17.
We present a systematic study of the stability of the formation of complexes produced by four metal ions (M+/2+) and 14 cytosine isomers (Cn). This work predicts theoretically that predominant product complexes are associated with higher-energy C4M+/2+ and C5M+/2+ rather than the most stable C1M+/2+. The prediction resolves successfully several experimental facts puzzling two research groups. Meanwhile, in-depth studies further reveal that direct isomerization of C1?C4 is almost impossible, and also that the isomerization induced by either metalation or hydration, or by a combination of the two unfavorable. It is the single water molecule locating between the H1(?N1) and O2 of the cytosine that plays the dual roles of being a bridge and an activator that consequently improves the isomerization greatly. Moreover, the cooperation of divalent metal ion and such a monohydration actually leads to an energy-free C1←C4 isomerization in the gas phase. Henceforth, we are able to propose schemes inhibiting the free C1←C4 isomerization, based purely on extended hydration at the divalent metal ion.
The more available complexes formed by metal ions and cytosine isomers in aqueous phase.  相似文献   

18.
Hydrazimium nitroformate ([N2H5]+[C(NO2)3], HNF) is an ionic oxidiser used in solid propellants. Its properties are easily affected by H2O because of its hygroscopicity. In this article, density functional theory (DFT) and molecular dynamics (MD) were employed to study the isolated HNF molecule and the HNF–H2O cluster in gas phase and in the aqueous solution. Three stable conformations were obtained for HNF in the gas phase and in the aqueous solution, respectively, and each conformation can form several different HNF–H2O clusters. Irrespective of whether it is in gas phase or in solution, intramolecular hydrogen bond interactions and other interactions (e.g. the binding energy, the dispersion energy, the second-order perturbation energy and the energy gap between frontier orbitals) of HNF are weaker in the clusters than in the isolated state. The initial decomposition energy of the cluster is lower than that of the isolated HNF molecule in both gaseous and aqueous phases, while the dissociation processes are the same. Molecular dynamic simulations showed that the clustered H2O elongates and weakens the C–NO2 bond in the solid HNF–H2O cluster compared with that in the solid HNF. H2O reduces and weakens intramolecular N–HΛO bonds too, and O–HΛN is the dominant intermolecular hydrogen bond between HNF and H2O.  相似文献   

19.
Simultaneous measurements of CO2 uptake, transpiration rate, and chlorophyll a fluorescence in leaf strips of C4 plants during the induction phase of photosynthesis are described. The timecourse of CO2 fixation is biphasic with the initial phase occurring within the first 1 to 5 min and the secondary phase consisting of a slow rise to the steady-state rate of photosynthesis. Transpiration rate follows the CO2-fixation timecourse closely but the intercellular CO2 concentration never falls below saturation for C4 plants. Chlorophyll a fluorescence quenching occurs exclusively during the initial fast phase of the CO2-fixation timecourse. The effect of duration of dark pretreatment of leaves on these parameters and the effects of light intensity and CO2 concentration are examined. These results are discussed with respect to the C4 cycle and photochemical and non-photochemical chlorophyll fluorescence quenching.Abbreviations IRGA infra-red gas analyser - NADP-ME, NAD-ME and PEP-CK the three groups of C4 plants utilising the enzymes NADP-malic enzyme, NAD-malic enzyme and phosphoenolpyruvate carboxykinase, respectively, for C4-acid decarboxylation - PEP phosphoenolpyruvate - 3-PGA 3-phosphoglyceric acid  相似文献   

20.
The role of light in soybean seed filling metabolism   总被引:2,自引:0,他引:2  
Soybean (Glycine max) yields high levels of both protein and oil, making it one of the most versatile and important crops in the world. Light has been implicated in the physiology of developing green seeds including soybeans but its roles are not quantitatively understood. We have determined the light levels reaching growing soybean embryos under field conditions and report detailed redox and energy balance analyses for them. Direct flux measurements and labeling patterns for multiple labeling experiments including [U‐13C6]‐glucose, [U‐13C5]‐glutamine, the combination of [U‐14C12]‐sucrose + [U‐14C6]‐glucose + [U‐14C5]‐glutamine + [U‐14C4]‐asparagine, or 14CO2 labeling were performed at different light levels to give further insight into green embryo metabolism during seed filling and to develop and validate a flux map. Labeling patterns (protein amino acids, triacylglycerol fatty acids, starch, cell wall, protein glycan monomers, organic acids), uptake fluxes (glutamine, asparagine, sucrose, glucose), fluxes to biomass (protein amino acids, oil), and respiratory fluxes (CO2, O2) were established by a combination of gas chromatography‐mass spectrometry, 13C‐ and 1H‐NMR, scintillation counting, HPLC, gas chromatography‐flame ionization detection, C:N and amino acid analyses, and infrared gas analysis, yielding over 750 measurements of metabolism. Our results show: (i) that developing soybeans receive low but significant light levels that influence growth and metabolism; (ii) a role for light in generating ATP but not net reductant during seed filling; (iii) that flux through Rubisco contributes to carbon conversion efficiency through generation of 3‐phosphoglycerate; and (iv) a larger contribution of amino acid carbon to fatty acid synthesis than in other oilseeds analyzed to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号