首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval (p < 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

2.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval ( p< 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

3.
In this paper, we measured the maximum isometric force at the hand in eight directions in the horizontal plane and at five positions in the workplace. These endpoint forces were the result of shoulder horizontal adduction/abduction and elbow flexion/extension torques. We found that the normalized maximum forces of all the six subjects deviated less than 15%, despite intra-subject differences in muscle strength of more than a factor of two. The maximum forces were found to systematically depend on the force direction and on the hand position in the workspace. The largest forces were found in a direction approximately along the line connecting shoulder joint and hand, and the smallest forces perpendicular to that line, thereby forming an elliptically shaped pattern. The elongation of the pattern was the largest for those hand positions having the more extended elbow joint. By using a lumped six-muscle model, with two mono-articular muscle pairs and one bi-articular pair, we were able to predict the observed force patterns. Here, we assumed that one of the muscles generates its maximum force and the others adjust their output to point the endpoint force in the required direction. We used a principal component analysis of the surface EMGs of simultaneously measured representatives of four of the six muscles. With the same model, we were then able to determine the principal directions of all the six muscle groups.  相似文献   

4.
Rotator cuff tears cause morphologic changes to cuff tendons and muscles, which can alter muscle architecture and moment arm. The effects of these alterations on shoulder mechanical performance in terms of muscle force and joint strength are not well understood. The purpose of this study was to develop a three-dimensional explicit finite element model for investigating morphological changes to rotator cuff tendons following cuff tear. The subsequent objectives were to validate the model by comparing model-predicted moment arms to empirical data, and to use the model to investigate the hypothesis that rotator cuff muscle moment arms are reduced when tendons are divided along the force-bearing direction of the tendon. The model was constructed by extracting tendon, cartilage, and bone geometry from the male Visible Human data set. Infraspinatus and teres minor muscle and tendon paths were identified relative to the humerus and scapula. Kinetic and kinematic boundary conditions in the model replicated experimental protocols, which rotated the humerus from 45 degrees internal to 45 degrees external rotation with constant loads on the tendons. External rotation moment arms were calculated for two conditions of the cuff tendons: intact normal and divided tendon. Predicted moment arms were within the 1-99% confidence intervals of experimental data for nearly all joint angles and tendon sub-regions. In agreement with the experimental findings, when compared to the intact condition, predicted moment arms were reduced for the divided tendon condition. The results of this study provide evidence that one potential mechanism for the reduction in strength observed with cuff tear is reduction of muscle moment arms. The model provides a platform for future studies addressing mechanisms responsible for reduced muscle force and joint strength including changes to muscle length-tension operating range due to altered muscle and tendon excursions, and the effects of cuff tear size and location on moment arms and muscle forces.  相似文献   

5.
A previously described three-dimensional mathematical model of the human masticatory system, predicting maximum possible bite forces in all directions and the recruitment patterns of the masticatory muscles necessary to generate these forces, was validated in in vivo experiments. The morphological input parameters to the model for individual subjects were collected using MRI scanning of the jaw system. Experimental measurements included recording of maximum voluntary bite force (magnitude and direction) and surface EMG from the temporalis and masseter muscles. For bite forces with an angle of 0, 10 and 20 degrees relative to the normal to the occlusal plane the predicted maximum possible bite forces were between 0.9 and 1.2 times the measured ones and the average ratio of measured to predicted maximum bite force was close to unity. The average measured and predicted muscle recruitment patterns showed no striking differences. Nevertheless, some systematic differences, dependent on the bite force direction, were found between the predicted and the measured maximum possible bite forces. In a second series of simulations the influence of the direction of the joint reaction forces on these errors was studied. The results suggest that they were caused primarily by an improper determination of the joint force directions.  相似文献   

6.
An extensive set of muscle and joint geometry parameters was measured of the right shoulder of an embalmed male. For all muscles the optimal muscle fiber length was determined by laser diffraction measurements of sarcomere length. In addition, tendon length and physiological cross-sectional area were determined. The parameter set was needed to enhance the reliability of a computer model of the shoulder (Van der Helm, 1994a,b Journal of Biomechanics 27, 527-550, 551-569). With the model, an abduction of the arm was simulated in seven positions, at 30 degrees intervals. In each of the simulated arm positions, actual sarcomere lengths were calculated from the lengths of 104 muscle elements, distributed over 16 shoulder muscles. For most muscle elements, the simulated abduction appeared to take place within the sarcomere length range in which the muscle elements can exert force. The muscle elements can then act on the ascending limb as well as on the plateau and on the descending limb of the relative force-length curves of sarcomeres. The produced data set is not only important for the refinement of shoulder modeling, but also for functional analyses of shoulder movements in general.  相似文献   

7.
8.
9.
A three-dimensional mathematical model of the human masticatory system, containing 16 muscle forces and two joint reaction forces, is described. The model allows simulation of static bite forces and concomitant joint reaction forces for various bite point locations and mandibular positions. The system parameters for the model were obtained from a cadaver head. Maximum possible bite forces were computed using optimization techniques; the optimization criterion we used was the minimizing of the relative activity of the most active muscle. The model predicts that at each specific bite point, bite forces can be generated in a wide range of directions, and that the magnitude of the maximum bite force depends on its direction. The relationship between bite force direction and its maximum magnitude depends on bite point location and mandibular position. In general, the direction of the largest possible bite force does not coincide with the direction perpendicular to the occlusal plane.  相似文献   

10.
11.
It is currently unknown in which ways activity of the ab- and adductor shoulder muscles affects shoulder biomechanics (scapular kinematics and glenohumeral translation), and whether these changes are relevant for alterations of the subacromial space width. The objective of this experimental in vivo study was thus to test the hypotheses that potential changes of the subacromial space width (during antagonistic muscle activity) are caused by alterations of scapular kinematics and/or glenohumeral translation. The shoulders of 12 healthy subjects were investigated with an open MRI-system at 30 degrees, 60 degrees, 90 degrees, 120 degrees and 150 degrees of arm elevation. A force of 15N was applied to the distal humerus, once causing isometric contraction of the abductors and once contraction of the adductors. The scapulo-humeral rhythm, scapular tilting and glenohumeral translation were calculated from the MR image data for both abducting and adducting muscle activity. Adducting muscle activity led to significant increase of the subacromial space width in all arm positions. The scapulo-humeral rhythm (2.2-2.5) and scapular tilting (2-4 degrees) remained relatively constant during elevation, no significant difference was found between abducting and adducting muscle activity. The position of the humerus relative to the glenoid was, however, significantly (p < 0.05) different (inferior and anterior) for adducting versus abducting muscle activity in midrange elevation (60-120 degrees). These data show that the subacromial space can be effectively widened by adducting muscle activity, by affecting the position of the humerus relative to the glenoid. This effect may be employed for conservative treatment of the impingement syndrome.  相似文献   

12.
To develop a musculoskeletal model of the shoulder mechanism, both shoulders of seven cadavers were measured to obtain a complete set of parameters. Using antropometric measurements, the mass and rotational inertia of segments were estimated, followed by three-dimensional measurements of all morphological structures relevant for modelling, i.e. muscle origins and insertions, muscle bundle directions, ligament attachments and articular surfaces; all in relation to selected bony landmarks. Subsequently, muscle contraction parameters as muscle mass and physiological cross-sectional area were measured. The method of data collection and the results for inertia and muscle contraction parameters as prerequisities for modelling are described.  相似文献   

13.
The aim of the present study was to determine how the intra-muscular segments of three shoulder muscles were coordinated to produce isometric force impulses around the shoulder joint and how muscle segment coordination was influenced by changes in movement direction, mechanical line of action and moment arm (ma). Twenty male subjects (mean age 22 years; range 18-30 years) with no known history of shoulder pathologies, volunteered to participate in this experiment. Utilising an electromyographic technique, the timing and intensity of contraction within 19 muscle segments of three superficial shoulder muscles (Pectoralis Major, Deltoid and Latissimus Dorsi) were studied and compared during the production of rapid (e.g. approximately 400ms time to peak) isometric force impulses in four different movement directions of the shoulder joint (flexion, extension, abduction and adduction). The results of this investigation have suggested that the timing and intensity of each muscle segment's activation was coordinated across muscles and influenced by the muscle segment's moment arm and its mechanical line of action in relation to the intended direction of shoulder movement (e.g. flexion, extension, abduction or adduction). There was also evidence that motor unit task groups were formed for individual motor tasks which comprise motor units from both adjacent and distant muscles. It was also confirmed that for any particular motor task, individual muscle segments can be functionally classified as prime mover, synergist or antagonist - classifications which are flexible from one movement to the next.  相似文献   

14.
This study was conducted to test whether glenohumeral geometry, as measured through MRI scans, is correlated with upper arm strength. The isometric shoulder strength of 12 subjects during one-handed arm abduction in the coronal plane, in a range from 5 degrees to 30 degrees , was correlated with the geometries of their glenoid fossas. Seven parameters describing the glenohumeral joint geometry in the coronal plane were identified as having expected influence on shoulder strength. In addition to these, a new geometric parameter, named the area of glenoid asymmetry (AGA), was considered to reflect the concavity-compression mechanism as well as the inclination of the glenoid surface. As a result of the high correlation between the AGA and mean force and mean moment (0.80, p0.01 and 0.69, p 相似文献   

15.
Bone densitometric data are often difficult to interpret in children and adolescents because of large inter- and intraindividual variations in bone size. Here, we propose a functional approach to bone densitometry that addresses two questions: is bone strength normally adapted to the largest physiological loads, that is, muscle force? Is muscle force adequate for body size? The theoretical background for this approach is provided by the mechanostat theory, which proposes that bones adapt their strength to keep the strain caused by physiological loads close to a set point. Because the largest physiological loads are caused by muscle contractions, there should be a close relationship between bone strength and muscle force or size. The proposed two-step diagnostic algorithm requires a measure of muscle force or size and a measure of bone mineral content (BMC) at a corresponding location. The results can be combined into four diagnostic groups. In the first situation, muscle force or size is adequate for height. If the skeleton is adapted normally to the muscle system, the result is interpreted as "normal". If it is lower than expected for muscle force or size, a "primary bone defect" is diagnosed. In the second situation, muscle force or size is too low for height. Even if the skeleton is adapted adequately to the decreased mechanical challenge, this means that bone mass and presumably strength are still too low for body height. Therefore, a "secondary bone defect" is diagnosed. It is hoped that the more detailed insights thus gained could help to devise targeted strategies for the prevention and treatment of pediatric bone diseases.  相似文献   

16.
The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle-sternoclavicular joint, acromioclavicular joint, and glenohumeral joint-were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.  相似文献   

17.
Functional electrical stimulation is used to restore movement and function of paralyzed muscles by activating skeletal muscle artificially. An accurate and predictive mathematical model can facilitate the design of stimulation patterns that produce the desired force. The present study is a first step in developing a mathematical model for non-isometric muscle contractions. The goals of this study were to: (1) identify how our isometric force model's parameters vary with changes in knee joint angle, (2) identify the best knee flexion angle to parameterize this model, and (3) validate the model by comparing experimental data to predictions in response to a wide range of stimulation frequencies and muscle lengths. Results showed that by parabolically varying one of the free parameters with knee joint angle and fixing the other parameters at the values identified at 40 degrees of knee flexion, the model could predict the force responses to a wide range of stimulation frequencies and patterns at different muscle lengths. This work showed that the current isometric force model is capable of predicting the changes in skeletal muscle force at different muscle lengths.  相似文献   

18.
Calcium and ionic strength are both known to modify the force developed by skinned frog muscle fibers. To determine how these parameters affect the cross-bridge contraction mechanism, the isotonic velocity transients following step changes in load were studied in solutions in which calcium concentration and ionic strength were varied. Analysis of the motion showed that calcium has no effect on either the null time or the amplitude of the transients. In contrast, the transient amplitude was increased in high ionic strength and was suppressed in low ionic strength. These results are consistent with the idea that calcium affects force in skeletal muscle by modulating the number of force generators in a simple switchlike "on-off" manner and that the steady force at a given calcium level is proportional to cross-bridge number. On the other hand, the effect of ionic strength on force is associated with changes in the kinetic properties of the cross-bridge mechanism.  相似文献   

19.
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70-140 degrees ). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80 degrees -90 degrees ). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation (P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 +/- 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 +/- 0.6 vs. 1.0 +/- 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.  相似文献   

20.
A two-dimensional, five-muscle model was used to determine the degree of precision required for accurate calculation of temporomandibular joint force magnitude and direction. The sensitivity of the calculations to each variable were assessed by incrementing each variable through its presumed biological range and were expressed as rate of change in the joint force per unit change in each variable. Sensitivity of the calculations to variables depends upon both bite force direction and bite position. The bite force direction with maximum precision for joint force magnitude produced minimal precision for joint force direction. The accuracy needed for each muscle force varied greatly. The effect of error for each muscle parameter depended upon the magnitude, direction, and moment arm length of the muscle force relative to those of the resultant muscle force. If each of the five muscle forces was known to the nearest 1% of total muscle force magnitude, 1 degree of muscle force direction, and 1 mm of moment arm length, temporomandibular joint force magnitude could be calculated to the nearest 4 kg and joint force direction to the nearest 7 degrees. It is not known whether this precision for the muscle forces is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号