首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为了探讨EB病毒潜伏性膜蛋白1(LMP1)促原代小鼠胚胎成纤维(MEF)细胞增殖规律及作用机制,构建包含野生型LMP1和其TNFR相关死亡区(TRADD)结合区即羧基末端384~386氨基酸置换(YYD→ID)的突变型LMP1逆转录病毒,感染原代培养的MEF细胞,动态观察各细胞在传代培养过程中细胞动力学和形态学变化。发现对照细胞(MEF-LNSX)传至P8~P10时出现明显的生长阻滞;携突变型LMP1的细胞(MEF-LMP1TRADD)自P10起倍增时间逐渐延长,P19时出现明显生长阻滞;而携野生型LMP的细胞(MEF-LMP1)倍增时间逐渐降低并发生了永生化。Westernblot检测发现MEF-LNSX细胞CyclinA表达自P4起明显降低,MEF-LMP1TRADD细胞自P10显著增高后快速降低,MEF-LMP1自P10显著增高后一直维持在较高水平。结果表明:LMP1能促进MEF细胞增殖并诱导体外永生;LMPTRADD则仅能诱导MEF细胞的早期增殖。提示羧基末端区(TRADD)是LMP1促MEF细胞永生的重要活性部位,上调CyclinA表达可能是其作用机制之一。  相似文献   

2.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-kappaB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.  相似文献   

3.
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.  相似文献   

4.
The signal-transducing adaptor protein 2 (STAP-2) is a recently identified adaptor protein that contains a pleckstrin homology (PH) and Src homology 2 (SH2)-like domains, as well as a proline-rich domain in its C-terminal region. In previous studies, we demonstrated that STAP-2 binds to MyD88 and IKK-alpha or IKK-beta and modulates NF-kappaB signaling in macrophages. In the present study, we found that ectopic expression of STAP-2 inhibited Epstein-Barr virus (EBV) LMP1-mediated NF-kappaB signaling and interleukin-6 expression. Indeed, STAP-2 associated with LMP1 through its PH and SH2-like domains, and these proteins interacted with each other in EBV-positive human B cells. We found, furthermore, that STAP-2 regulated LMP1-mediated NF-kappaB signaling through direct or indirect interactions with the tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) and TNFR-associated death domain (TRADD) proteins. STAP-2 mRNA was induced by the expression of LMP1 in human B cells. Furthermore, transient expression of STAP-2 in EBV-positive human B cells decreased cell growth. Finally, STAP-2 knockout mouse embryonic fibroblasts showed enhanced LMP1-induced cell growth. These results suggest that STAP-2 acts as an endogenous negative regulator of EBV LMP1-mediated signaling through TRAF3 and TRADD.  相似文献   

5.
A site in the Epstein-Barr virus (EBV) transforming protein LMP1 that constitutively associates with the tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein TRADD to mediate NF-kappaB and c-Jun N-terminal kinase activation is critical for long-term lymphoblastoid cell proliferation. We now find that LMP1 signaling through TRADD differs from TNFR1 signaling through TRADD. LMP1 needs only 11 amino acids to activate NF-kappaB or synergize with TRADD in NF-kappaB activation, while TNFR1 requires approximately 70 residues. Further, LMP1 does not require TRADD residues 294 to 312 for NF-kappaB activation, while TNFR1 requires TRADD residues 296 to 302. LMP1 is partially blocked for NF-kappaB activation by a TRADD mutant consisting of residues 122 to 293. Unlike TNFR1, LMP1 can interact directly with receptor-interacting protein (RIP) and stably associates with RIP in EBV-transformed lymphoblastoid cell lines. Surprisingly, LMP1 does not require RIP for NF-kappaB activation. Despite constitutive association with TRADD or RIP, LMP1 does not induce apoptosis in EBV-negative Burkitt lymphoma or human embryonic kidney 293 cells. These results add a different perspective to the molecular interactions through which LMP1, TRADD, and RIP participate in B-lymphocyte activation and growth.  相似文献   

6.
7.
The latent membrane protein LMP1 of Epstein-Barr virus (EBV) is often present in EBV-associated malignancies including nasopharyngeal carcinoma and Hodgkin's lymphoma. Previous work demonstrates that the LMP1 gene of EBV is sufficient to transform certain established rodent fibroblast cell lines and to induce the tumorigenicity of some human epithelial cell lines. In addition, LMP1 plays pleiotropic roles in cell growth arrest, differentiation, and apoptosis, depending on the background of the target cells. To examine the roles of LMP1 in cell proliferation and growth regulation in primary culture cells, we constructed a recombinant retrovirus containing an LMP1 gene. With this retrovirus, LMP1 was shown to stimulate the proliferation of primary mouse embryonic fibroblasts (MEF cells). It has a mitogenic activity for MEF cells, as demonstrated by an immediate induction of cell doubling time. In addition, it significantly extends the passage number of MEF cells to more than 30 after retroviral infection, compared with less than 5 for uninfected MEF cells. Furthermore, LMP1 cooperates with a p16-insensitive CDK4(R24C) oncogene in transforming MEF cells. Our results provide the first evidence of the abilities of the LMP1 gene, acting alone, to effectively induce the proliferation of primary MEF cells and of its cooperativity with another cellular oncogene in transforming primary cells.  相似文献   

8.
9.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) transforms rodent fibroblasts and is expressed in most EBV-associated malignancies. LMP1 (transformation effector site 2 [TES2]/C-terminal activation region 2 [CTAR2]) activates NF-κB, p38, Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and interferon regulatory factor 7 (IRF7) pathways. We have investigated LMP1 TES2 genome-wide RNA effects at 4 time points after LMP1 TES2 expression in HEK-293 cells. By using a false discovery rate (FDR) of <0.001 after correction for multiple hypotheses, LMP1 TES2 caused >2-fold changes in 1,916 mRNAs; 1,479 RNAs were upregulated and 437 were downregulated. In contrast to tumor necrosis factor alpha (TNF-α) stimulation, which transiently upregulates many target genes, LMP1 TES2 maintained most RNA effects through the time course, despite robust and sustained induction of negative feedback regulators, such as IκBα and A20. LMP1 TES2-regulated RNAs encode many NF-κB signaling proteins and secondary interacting proteins. Consequently, many LMP1 TES2-regulated RNAs encode proteins that form an extensive interactome. Gene set enrichment analyses found LMP1 TES2-upregulated genes to be significantly enriched for pathways in cancer, B- and T-cell receptor signaling, and Toll-like receptor signaling. Surprisingly, LMP1 TES2 and IκBα superrepressor coexpression decreased LMP1 TES2 RNA effects to only 5 RNAs, with FDRs of <0.001-fold and >2-fold changes. Thus, canonical NF-κB activation is critical for almost all LMP1 TES2 RNA effects in HEK-293 cells and a more significant therapeutic target than previously appreciated.  相似文献   

10.
Epstein-Barr virus (EBV) infection of primary human B cells drives their indefinite proliferation into lymphoblastoid cell lines (LCLs). B cell immortalization depends on expression of viral latency genes, as well as the regulation of host genes. Given the important role of microRNAs (miRNAs) in regulating fundamental cellular processes, in this study, we assayed changes in host miRNA expression during primary B cell infection by EBV. We observed and validated dynamic changes in several miRNAs from early proliferation through immortalization; oncogenic miRNAs were induced, and tumor suppressor miRNAs were largely repressed. However, one miRNA described as a p53-targeted tumor suppressor, miR-34a, was strongly induced by EBV infection and expressed in many EBV and Kaposi's sarcoma-associated herpesvirus (KSHV)-infected lymphoma cell lines. EBV latent membrane protein 1 (LMP1) was sufficient to induce miR-34a requiring downstream NF-κB activation but independent of functional p53. Furthermore, overexpression of miR-34a was not toxic in several B lymphoma cell lines, and inhibition of miR-34a impaired the growth of EBV-transformed cells. This study identifies a progrowth role for a tumor-suppressive miRNA in oncogenic-virus-mediated transformation, highlighting the importance of studying miRNA function in different cellular contexts.  相似文献   

11.

Background and Objectives

Epstein-Barr Virus (EBV) Latent Membrane Protein 1 (LMP1) is linked to a variety of malignancies including Hodgkin''s disease, lymphomas, nasopharyngeal and gastric carcinoma. LMP1 exerts its transforming or oncogenic activity mainly through the recruitment of intracellular adapters via LMP1 C-terminal Transformation Effector Sites (TES) 1 and 2. However, LMP1 is also reported to elicit significant cytotoxic effects in some other cell types. This cytotoxic effect is quite intriguing for an oncogenic protein, and it is unclear whether both functional aspects of the protein are related or mutually exclusive.

Methodology and Principal Findings

Using different ectopic expression systems in both Madin-Darby canine kidney (MDCK) epithelial cells and human embryonic kidney HEK-293 cells, we observe that LMP1 ectopic expression massively induces cell death. Furthermore, we show that LMP1-induced cytotoxicity mainly implies LMP1 C-terminal transformation effector sites and TRADD recruitment. However, stable expression of LMP1 in the same cells, is found to be associated with an increase of cell survival and an acquisition of epithelial mesenchymal transition phenotype as evidenced by morphological modifications, increased cell mobility, increased expression of MMP9 and decreased expression of E-cadherin. Our results demonstrate for the first time that the cytotoxic and oncogenic effects of LMP1 are not mutually exclusive but may operate sequentially. We suggest that in a total cell population, cells resistant to LMP1-induced cytotoxicity are those that could take advantage of LMP1 oncogenic activity by integrating LMP1 signaling into the pre-existent signaling network. Our findings thus reconcile the apparent opposite apoptotic and oncogenic effects described for LMP1 and might reflect what actually happens on LMP1-induced cell transformation after EBV infection in patients.  相似文献   

12.
CaM kinase-Gr is a multifunctional Ca2+/calmodulin-dependent protein kinase which is enriched in neurons and T lymphocytes. The kinase is absent from primary human B lymphocytes but is expressed in Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell lines, suggesting that expression of the kinase can be upregulated by an EBV gene product(s). We investigated the basis of CaM kinase-Gr expression in EBV-transformed cells and the mechanisms that regulate its activity therein by using an EBV-negative Burkitt lymphoma cell line, BJAB, and BJAB cells converted to expression of individual EBV proteins by single-gene transfer. CaM kinase-Gr expression was upregulated in BJAB cells by EBV latent-infection membrane protein 1 (LMP1) but not by LMP2A or by nuclear proteins EBNA1, EBNA2, EBNA3A, and EBNA3C. In LMP1-converted BJAB cells, the kinase was functional and was dramatically activated upon cross-linking of surface immunoglobulin M. Overlapping cDNA clones that encode human CaM kinase-Gr were sequenced, revealing 81% amino acid identity between the rat and human proteins. Transfection of BJAB cells with an expression construct for the human enzyme resulted in a functional kinase which was shown by epitope tagging to localize primarily to cytoplasmic and perinuclear structures. Induction of CaM kinase-Gr expression by LMP1 provides the first example of a Ca2+/calmodulin-dependent protein kinase upregulated by a viral protein. In view of the key role played by LMP1 in B-lymphocyte immortalization by EBV, these findings implicate CaM kinase-Gr as a potential mediator of B-lymphocyte growth transformation.  相似文献   

13.
14.
The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders.  相似文献   

15.
Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is an integral membrane protein which has transforming potential and is necessary but not sufficient for B-cell immortalization by EBV. LMP1 molecules aggregate in the plasma membrane and recruit tumour necrosis factor receptor (TNF-R) -associated factors (TRAFs) which are presumably involved in the signalling cascade leading to NF-kappaB activation by LMP1. Comparable activities are mediated by CD40 and other members of the TNF-R family, which implies that LMP1 could function as a receptor. LMP1 lacks extended extracellular domains similar to beta-adrenergic receptors but, in contrast, it also lacks any motifs involved in ligand binding. By using LMP1 mutants which can be oligomerized at will, we show that the function of LMP1 in 293 cells and B cells is solely dependent on oligomerization of its carboxy-terminus. Biochemically, oligomerization is an intrinsic property of the transmembrane domain of wild-type LMP1 and causes a constitutive phenotype which can be conferred to the signalling domains of CD40 or the TNF-2 receptor. In EBV, immortalized B cells cross-linking in conjunction with membrane targeting of the carboxy-terminal signalling domain of LMP1 is sufficient for its biological activities. Thus, LMP1 acts like a constitutively activated receptor whose biological activities are ligand-independent.  相似文献   

16.
17.
The stable expression of the Epstein-Barr virus (EBV) latent membrane protein (LMP) in certain EBV-negative Burkitt's lymphoma cell lines correlates with an increased expression of the oncogene Bcl-2 (S. Henderson, M. Rowe, C. Gregory, D. Croom-Carter, F. Wang, R. Longnecker, E. Kieff, and A. Rickinson, Cell 65:1107-1115, 1991). This finding is consistent with a model in which Bcl-2 contributes to the immortalization of B cells mediated by EBV. We therefore asked whether the expression of Bcl-2 protein correlates with the induction of three cellular phenotypes induced by or associated with LMP. The expression of Bcl-2 in primary B cells infected with the B95-8 strain of EBV varied between 1 and 1.8 times that in uninfected cells when 50% of the cells were infected, expressed LMP, and incorporated 20-fold more [3H]thymidine than did uninfected cells. This finding indicates that induced proliferation of these primary cells is not sufficient to induce Bcl-2. We found that BALB/c 3T3 cells and their derivatives transformed by LMP do not express Bcl-2 detectably. The expression of LMP at high levels in lymphoid cells is cytotoxic and correlates with an increased expression of Bcl-2 following stable selection for the introduced LMP gene; 2 days after transfection, control vector- and LMP-transfected populations, however, express equal levels of Bcl-2 protein. We also analyzed transient expression of LMP in an EBV-negative Burkitt's lymphoma cell line. Infection of BJAB cells with the B95-8 strain of EBV results in an increase in Bcl-2 expression with a time course similar to that of LMP expression, and LMP alone transiently induces an increase in Bcl-2 expression in these cells. We interpret these observations to indicate that increased expression of Bcl-2 is unlikely to contribute to the ability of EBV to immortalize primary B cells and that both the transformation of rodent cells and the cytotoxicity mediated by LMP are independent of Bcl-2.  相似文献   

18.
Epstein-Barr virus (EBV) is associated with several human malignancies where it expresses limited subsets of latent proteins. Of the latent proteins, latent membrane protein 1 (LMP1) is a potent transforming protein that constitutively induces multiple cell signaling pathways and contributes to EBV-associated oncogenesis. Regulation of LMP1 expression has been extensively described during the type III latency of EBV. Nevertheless, in the majority of EBV-associated tumors, the virus is commonly found to display a type II latency program in which it is still unknown which viral or cellular protein is really involved in maintaining LMP1 expression. Here, we demonstrate that LMP1 activates its own promoter pLMP1 through the JNK signaling pathway emerging from the TES2 domain. Our results also reveal that this activation is tightly controlled by LMP1, since pLMP1 is inhibited by LMP1-activated NF-kappaB signaling pathway. By using our physiological models of EBV-infected cells displaying type II latency as well as lymphoblastoid cell lines expressing a type III latency, we also demonstrate that this balanced autoregulation of LMP1 is shared by both latency programs. Finally, we show that this autoactivation is the most important mechanism to maintain LMP1 expression during the type II latency program of EBV.  相似文献   

19.
The Epstein-Barr virus (EBV) BGLF4 gene encodes a serine/threonine protein kinase (PK) that is expressed in the cytolytic cycle. EBV nuclear antigen 2 (EBNA2) is a key latency gene essential for immortalization of B lymphocytes and transactivation of viral and cellular promoters. Here we report that EBV PK phosphorylates EBNA2 at Ser-243 and that these two proteins physically associate. PK suppresses EBNA2's ability to transactivate the LMP1 promoter, and Ser-243 of EBNA2 is involved in this suppression. Moreover, EBNA2 is hyperphosphorylated during EBV reactivation in latently infected B cells, which is associated with decreased LMP1 protein levels. This is the first report about the effect of EBV PK on the function of one of its target proteins and regulation of EBNA2 phosphorylation during the EBV lytic cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号