首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangrove stands in Puttalam lagoon and Dutch bay, two interconnected lagoons situated on the northwestern coast of Sri Lanka have been classified broadly into two groups, i.e., estuarine and island/mainland-fringing stands. Structural diversity of six mangrove stands, representing the two types was studied in terms of floristic composition, density, basal area, mean stand diameter, tree height, standing above-ground biomass and leaf-area index.Rhizophora mucronata andAvicennia marina were the dominant species. Higher mean stand diameters for the mangrove stands in Puttalam lagoon indicated greater maturity than the estuarine mangrove stands in Dutch bay. Nevertheless, estuarine stands in Dutch bay were structurally more complex (complexity indices 8.11–22.7) than the island/mainland-fringing mangrove stands (complexity indices 1.38–6.78). Higher number of species present in the estuarine mangrove stands is the major element that contributes to the higher values for the complexity indices for those stands. This appears to mask the contribution of stand-age to the complexity of a mangrove stand. Therefore complexity indices alone may not be used to explain adequately the structural diversity among mangrove stands.  相似文献   

2.
Eusse  Ana Maria  Aide  T. Mitchell 《Plant Ecology》1999,145(2):307-315
Historically, Pterocarpus officinalisJacq. (Leguminoseae) dominated freshwater wetlands in the coastal plains of Puerto Rico, but deforestation has reduced its distribution to small patches adjacent to mangrove forests in areas of higher salinity. The objective of this study was to determine how a gradient in soil salinity affected litter, flower, and fruit production in a Pterocarpus officinalis.Three 100 m2 plots were established in each of three sites along a salinity gradient: pasture/Pterocarpus edge (low salinity, mean salinity at 60 cm–9.7 g Kg–1), Pterocarpus forest (intermediate salinity, 11.5 g Kg–1) and a Pterocarpus/mangrove ecotone (high salinity, 15.0 g Kg–1). Across this gradient, P. officinalis accounted for 100% of the relative basal area in the low and intermediate sites and 43% in the high salinity site which was domimated by Laguncularia racemosa. The basal area of P. officinalis decreased along the gradient from 73.5 m2 ha–1 in the low salinity site to 42.0 m2 ha–1 in the high salinity site. Litterfall was sampled on average every 23 days in 45 0.25 m2 traps (5 traps per plot) for two years. Annual litterfall for the forest was 11.9 Mg ha–1 yr–1. Peaks in litterfall were associated with high precipitation in May 1995 and tropical storms in September 1995. Leaf fall of P. officinalis was significantly higher in the low salinity site (4.8 Mg ha–1 yr–1) than the high salinity site (1.8 Mg ha–1 yr–1), but total stand litterfall was greatest in the area of high salinity due to the greater contribution of L. racemosa. Pterocarpus flower and fruit production was approximately 10 times greater in low and intermediate salinity sites in comparison with the high salinity site. An increase in global temperature, will lead to higher sea level and higher soil salinity in costal wetlands. To conserve this wetland forest type it is critical to expand the distribution into areas of lower salinity where this species occurred historically.  相似文献   

3.
Forest structure and biomass were determined in a mangrove stand dominated by Bruguiera gymnorrhiza (L.) Lam. Trees in 5 m2 sample plots were harvested at ground level and then further cut into 1 m strata for separation into living wood, dead wood, leaves, reproductive material and pneumatophores. Mean above-ground living biomass was calculated at 94.49±7.83 t dry matter ha–1, while dead wood contributed a mean mass of 7.63±0.89 t dry matter ha–1. Excavations of roots yielded a below-ground biomass of 9.67 t dry matter ha–1 which represented only 9.8% of the above-ground value. There was a mean density of 4700 living stems ha–1 with plant heights ranging from 0.57 m to 5.80 m. Mean LAI was 4.95±0.80. As a basis for estimating standing biomass, regression lines were fitted to biomass values from individual trees of B. gymnorrhiza and Avicennia marina (Forssk.) Vierh. of various sizes. A comparison of these relationships with methods used by previous workers for estimating biomass suggests that most other methods cannot be applied without modification for local stands of mangroves.  相似文献   

4.
Litterfall from a Melaleuca forest was investigated as part of chemical cycling studies on the Magela Creek floodplain in tropical, northern Australia. The forest contained two species of tree, Melaleuca cajaputi and Melaleuca viridiflora, with a combined average density of 294 trees ha–1. The M. viridiflora trees had diameter breast height measurements ranging from 11.8 to 62.0 cm, median class 25.1–30.0cm and a mean value of 29.2±1.0 cm, compared to 13.0 to 66.3 cm, 30.1–35.0cm and 33.5±1.0cm for M. cajaputi trees. A regression model between tree height, diameter breast height and fresh weight was determined and used to calculate average tree weights of 775±1.6kg for M. viridiflora and 1009±1.6kg for M. cajaputi, and a total above-ground fresh weight of 263±0.3t ha–1. The weight of litter recorded each month on the ground beneath the tree canopy ranged from 582±103 to 2176±376 g m–2 with a monthly mean value of 1105±51 g m–2. The coefficient of variation of 52% on this mean indicates the large spatial and temporal variability in litter distribution over the study site. This variability was greatly affected by the pattern of water flow and litter transport during the Wet season. Litterfall from the trees was evaluated using two techniques - nets and trays. The results from these techniques were not significantly different with annual litterfall collected in the nets being 705 ± 25 g m–2 and in the trays 716±49 g m–2. The maximum monthly amount of litterfall, 108 ±55g m–2, occurred during the Dry season months of June–July. Leaf material comprised 70% of the total annual weight of litter, 480±29 g m–2 in the nets and 495 ± 21 g m–2 in the trays. The tree density and weight of litter suggest that the Melaleuca forests are highly productive and contribute a large amount of material to the detrital/debris turnover cycle on the floodplain.  相似文献   

5.
Carbon balance of a tropical savanna of northern Australia   总被引:7,自引:0,他引:7  
Chen X  Hutley LB  Eamus D 《Oecologia》2003,137(3):405-416
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1.  相似文献   

6.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

7.
SINGH  LALJI; SINGH  J. S 《Annals of botany》1991,68(3):263-273
Species composition, plant biomass and net primary productivitywere studied on three sites of a dry tropical forest The forestwas characterized by small structure with 38–10.4 m2 ha–1tree and 3 1–7 8 m2 ha–1 shrub basal cover Speciesdiversity was highest for the mid-slope site while the concentrationof dominance was greatest for the hill-top stand The beta diversitywas 3 1 Total standing crop of vegetation averaged 66 98 t ha–1with 46 70 t ha–1 in the tree layer, 13.97 t ha–1in the shrub layer, 0.35 t ha–1 in the herb layer, 2 83t ha–1 in the litter layer and 3 13 t ha–1 in fineroots Of the total annual litterfall (4 88–6.71 t ha–1),69% was accounted for by leaves and 31% by non-leaf matter Netprimary production (NPP) ranged between 11 3 and 19 2 t ha–1year–1, to which the contributions of trees, shrubs andherbs averaged 72, 22 and 6%, respectively Contribution of rootsto NPP was substantial and ranged from 2 9 to 5 3 t ha–1year–1 A total of 83% of vegetation carbon was storedin the above-ground plant parts while the above-ground NPP wasresponsible for 72% of the total carbon input into the systemThe contribution of foliage, herbaceous vegetation and fineroots to carbon turnover was disproportionately larger comparedto their share in the total standing crop Carbon budgeting indicatedthat the forest was an accumulating system, over at least theshort term Dry tropical forest, biomass, litterfall, net primary production, carbon budget, carbon flux  相似文献   

8.
Keith  H.  Raison  R.J.  Jacobsen  K.L. 《Plant and Soil》1997,196(1):81-99
Pools and annual fluxes of carbon (C) were estimated for a mature Eucalyptus pauciflora (snowgum) forest with and without phosphorus (P) fertilizer addition to determine the effect of soil P availability on allocation of C in the stand. Aboveground biomass was estimated from allometric equations relating stem and branch diameters of individual trees to their biomass. Biomass production was calculated from annual increments in tree diameters and measurements of litterfall. Maintenance and construction respiration were calculated for each component using equations given by Ryan (1991a). Total belowground C flux was estimated from measurements of annual soil CO2 efflux less the C content of annual litterfall (assuming forest floor and soil C were at approximate steady state for the year that soil CO2 efflux was measured). The total C content of the standing biomass of the unfertilized stand was 138 t ha-1, with approximately 80% aboveground and 20% belowground. Forest floor C was 8.5 t ha-1. Soil C content (0–1 m) was 369 t ha-1 representing 70% of the total C pool in the ecosystem. Total gross annual C flux aboveground (biomass increment plus litterfall plus respiration) was 11.9 t ha-1 and gross flux belowground (coarse root increment plus fine root production plus root respiration) was 5.1 t ha-1. Total annual soil efflux was 7.1 t ha-1, of which 2.5 t ha-1 (35%) was contributed by litter decomposition.The short-term effect of changing the availability of P compared with C on allocation to aboveground versus belowground processes was estimated by comparing fertilized and unfertilized stands during the year after treatment. In the P-fertilized stand annual wood biomass increment increased by 30%, there was no evidence of change in canopy biomass, and belowground C allocation decreased by 19% relative to the unfertilized stand. Total annual C flux was 16.97 and 16.75 t ha-1 yr-1 and the ratio of below- to aboveground C allocation was 0.43 and 0.35 in the unfertilized and P-fertilized stands, respectively. Therefore, the major response of the forest stand to increased soil P availability appeared to be a shift in C allocation; with little change in total productivity. These results emphasise that both growth rate and allocation need to be estimated to predict changes in fluxes and storage of C in forests that may occur in response to disturbance or climate change.  相似文献   

9.
Pringle  J. D.  Ugarte  R.  Semple  R. E. 《Hydrobiologia》1990,(1):317-323
Western Prince Edward Island Irish moss (Chondrus crispus) has been intensively dragraked since 1966. As well, most unattached fronds removed by wave surge, ice, etc. are brought to shore by waves and currents, where they are harvested eagerly. Accurate annual fishing yields were recorded between 1966 and 1981 inclusive. Given that herbivore densities are reduced, likely due to the intensive raking, and that mean annual bycatch (non-Irish moss seaweeds) (23.4 %) and commercial bed sizes (873 ha) were known, the fishing yields thus were considered a unique database from which to calculate net primary production (NPP). Factors used to convert from wet to dry wt (DW), and from dry wt to carbon were 0.22 an 0.31, respectively. Calculated mean annual NPP values were as follows: 2.101 ± 0.654 t (DW) ha–1 y–1; 210.1 g DW m–2 yr–1 and 63.0 g C m–2 yr–1. These values are much lower than those calculated for northwest Atlantic kelp and rockweed but similar to that determined for northeast Atlantic Gracilaria verrucosa. The interannual variability pattern for NPP was similar for both the wild Irish moss harvest and that of experimental Chondrus crispus outplants placed in one of the 14 commercial beds.  相似文献   

10.
Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington, USA. These measurements were used to estimate gross primary production (GPP) and net primary production (NPP); autotrophic respiration (Ra) and heterotrophic (Rh) respiration; and net ecosystem production (NEP). Monte Carlo methods were used to calculate uncertainty (expressed as ± 2 standard deviations of 200–400 calculations). Live carbon (C) stores were 39,800 g C m–2 (34,800–44,800 g C m–2). The store of C in detritus and mineral soil was 22,092 g C m–2 (20,600–23,600 g C m–2), and the total C stores were 61,899 g C m–2 (56,600–67,700 g C m–2). Total NPP was 597 g C m–2 y–1 (453 to 741 g C m–2 y–1). Ra was 1309 g C m–2 y–1 (845–1773 g C m–2 y–1), indicating a GPP of 1906 g C m–2 y–1 (1444–2368 g C m–2 y–1). Rh, including the respiration of heart rots in tree boles, was 577 g C m–2 y–1 (479–675 g C m–2 y–1). Long-term NEP was estimated to be +20 g C m–2 y–1 (–116 to +156 g C m–2 y–1), indicating this stand might be a small sink. These estimates contrast with the larger sink estimated at the same site using eddy-flux methods. Several hypotheses to explain this discrepancy were explored, including (a) undetected biomass increases, (b) underestimates of NPP, (c) unmeasured losses, and (d) a temporal mismatch between the two sets of measurements. The last hypothesis appears the most likely.  相似文献   

11.
Belowground carbon storage was examined for mangrove forests on Pohnpei Island, Micronesia. Stored carbon in a coral reef-type mangrove habitat consisting of a 2 m thick mangrove peat layer, which is a type of mangrove habitat in tropical Pacific islands, was estimated at 1300 t C ha–1. The carbon burial rate during the phase of gradual sea-level rise, which was calculated at 93 g m–2 year–1 between 1800 and 1380 years bp using the medians of the radiocarbon ages, was significantly higher than that between 1380 years bp and present in a stable sea-level phase.  相似文献   

12.
The production rate ofEichhornia crassipes was stimulated by water of the river Ganga and by prevailing environmental conditions. It was highest in October (4.76 g.m–2.d–1) and was positively correlated with ammonia nitrogen and total phosphorus in the water but negatively correlated with total alkalinity and transparency. The average annual production of 14.13 t.ha–1.a–1 is equivalent to the average production of 0.067 t.ha–1.a–1 phosphorus and 0.40 t.ha–1.a–1 nitrogen. The concentrations of total nitrogen and total phosphorus of the plant varied seasonally. They decreased with increasing production rate in summer and monsoon.  相似文献   

13.
Continental scale patterns in mangrove litter fall   总被引:1,自引:0,他引:1  
John S. Bunt 《Hydrobiologia》1995,295(1-3):135-140
Litter fall was monitored in stands of the mangrove species Rhizophora stylosa Griff., Ceriops tagal (Perr.) C. B. Robinson and Avicennia marina (Forsk.), Vierh. at approximately monthly intervals over a single annual cycle at selected locations around the coastline of Australia and throughout the distribution of each species. Concurrent data were obtained from a single location near Port Moresby in Papua New Guinea. The materials recovered in sub-canopy catchers were sorted into major categories and dried and weighed as leaves, petiolar stipules, twigs and other woody tissues, reproductive parts (flowers, flower buds, fruit and propagules) and residual detritus. This paper considers the principal findings of the study among which it may be reported that the highest total annual litter recoveries at individual catchers were 1598 g dry wt m–2 for A. marina, 2369 g dry wt m–2 for R. stylosa and 1290 g dry wt m–2 for C. tagal. Significant regional differences in litter fall emerged when data from major climatic zones were compared. The outcome of this analysis is detailed in the body of the paper.  相似文献   

14.
Lalji Singh 《Plant Ecology》1992,98(2):129-140
The present paper elucidates the pattern of leaf and non-leaf fall and quantifies of the total annual input of litter in a dry tropical forest of India. In addition, concentration of selected nutrients in various litter species and their annual return to the forest floor are examined. Total annual input of litter measured in litter traps ranged between 488.0–671.0 g m-2 of which 65–72% was leaf litter fall and 28–35% wood litter fall. 73–81% leaves fall during the winter season. Herbaceous litter fall ranged between 80.0–110.0 g m-2 yr-1. The annual nutrient return through litter fall amounted (kg ha-1): 51.6–69.6 N, 3.1–4.3 P, 31.0–40.0 Ca, 14.0–19.0 K and 3.7–5.0 Na, of which 71–77% and 23–29% were contributed by leaf and wood litter fall, respectively for different nutrients. Input of nutrients through herbaceous litter was: 13.0–16.6 for N, 1.0–1.4 for P, 4.0–5.0 for Ca, 7.9–10.5 for K and 0.8–1.0 kg ha-1 yr-1 for Na.  相似文献   

15.
Components of litter accession were measured for 2 years in two re growth eucalypt stands, a Nothofagus mixed forest, and a tall shrubland in the temperate forests of southern Tasmania. Total annual litterfall (t ha-1) ranged from 4.77 to 5.64 in the regrowth eucalypt stands and 4.06 to 4.94 and 1.95 to 2.17 in the Nothofagus mixed forest and tall shrubland, respectively. Significant correlations were found between annual litterfall of individual tree species and their respective basal area measured at 1.3 m height. The seasonal patterns of litterfall were most closely related to mean maximum temperatures. However, fall of non-leaf material was also related to gale force winds associated with the spring equinox.  相似文献   

16.
The nitrogen cycle in lodgepole pine forests,southeastern Wyoming   总被引:7,自引:4,他引:3  
Storage and flux of nitrogen were studied in several contrasting lodgepole pine (Pinus contorta spp.latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m–2), with aboveground detritus (37.5–48.8g · m–2) and living biomass (19.5–24.0 g · m–2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m–2 · yr–1), and biological fixation of atmospheric N (<0.03 g · m–2 · yr–1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herbLupinus argenteus probably exceeded 0.1 g · m–2 · yr–1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m–2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m–2 · yr–1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L–1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m–2 · yr–1 with estimated root turnover of 0.37-gN · m–2 · yr–1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m–2 · yr–1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests.  相似文献   

17.
The biomass formation ofAzolla was greatly enhanced by water of the River Ganga and by prevailing environmental conditions. It increased gradually from January to April (first maximum 2.409 g.m–2.day–1), declined during June (1.185 g.m–2.day–1), and reached a second its maximum during September (2.629 g.m–2.day–1). The biomass formation was related to the nutrient availability in the medium in a particular season (measured were: nitrate-N, available phosphorus, total suspended solids, and conductivity). The average annual production of 6.73 ton.ha–1.yr–1 is equivalent to the average production of 0.025 ton.ha–1.yr–1 phosphorus, 0.252 ton.ha–1.yr–1 nitrogen, and 1.57 ton.ha–1.yr–1 crude protein.  相似文献   

18.
Lead compounds, especially ionic organolead compounds (OLC), are highly toxic and mobile pollutants strongly affecting many ecosystems. Soil pools and fluxes with precipitation, litterfall and runoff of trimethyllead (TML), one of the dominant ionic OLC in the environment, and Pbtotal were investigated in a forested ecosystem in NE-Bavaria, Germany. In addition, ad/desorption of TML to soils was studied in batch experiments and its degradation in soils was investigated using long term incubations. Total soil storage in the catchment was 11.56 mg Pb ha–1 for TML and 222 kg Pb ha–1 for Pbtotal. More than 90% of the soil storage of TML was found in the wetland soils of the catchment representing only 30% of the area. Most Pbtotal (>90%) was found in the upland soils. In upland soils, TML was only detectable in the forest floor. The annual total deposition from the atmosphere, estimated as throughfall + litterfall fluxes, amounted to 3.7 mg Pb ha–1 year–1 for TML and 52 g Pb ha–1 year–1 for Pbtotal. The contribution of litterfall was 1.5 and 32%, respectively. The concentrations of TML and Pbtotal in wet precipitation were: fog > throughfall > bulk precipitation. The annual fluxes with runoff from the catchment was 0.5 mg Pb ha–1 year–1 for TML and 2.8 g Pb ha–1 year–1 for Pbtotal. TML degraded rapidly in the forest floor (Oa horizon) with a half-life (t 1/2) of 33.5 days. The degradation of TML in Fen (t 1/2 = 421 days) and in the mineral soil (Bw-C horizon, t 1/2 = 612 days) was much slower. Emission of tetramethyllead from wetland soils was not observed during the 1 year incubation. The adsorption affinity of TML to different soils was Fen > Oa > A Bw-C. The ratio of total soil storages to the present annual input were 3.6 years for TML. TML and Pbtotal are still deposited in remote areas even after the use of tetraalkyllead as additives has been terminated for years. The rates of deposition are, however, much lower than in the past. Forest soils act as a sink for deposited TML and Pbtotal. TML is accumulated mostly in wetland soils and seems to be stable under anoxic conditions for a long time. In upland soils, TML decomposes rapidly. Only small amounts of TML are transferred from soils into runoff.  相似文献   

19.
This study analyses the effects of anthropogenic disturbance on plant diversity and community attributes of a sacred grove (montane subtropical forest) at Swer in the East Khasi Hills district of Meghalaya in northeast India. The undisturbed, moderately disturbed and highly disturbed stands were identified within the sacred grove on the basis of canopy cover, light interception and tree (cbh 15 cm) density. The undisturbed forest stand had >40% canopy cover, >50% light interception and a density of 2103 trees per hectare, whereas the highly disturbed stand had <10% canopy cover, <10% light interception and 852 trees per hectare. The moderately disturbed stand occupied the intermediate position with respect to these parameters. The study revealed that the mild disturbance favoured species richness, but with increased degree of disturbance, as was the case in the highly disturbed stand, the species richness markedly decreased. The number of families of angiosperms was highest (63) in the undisturbed stand, followed by the moderately (60) and highly disturbed (46) stands. The families Rubiaceae, Asteraceae and Poaceae were the dominant families in the sacred forest. Rubiaceae was represented by 11, 14 and 10 species in the undisturbed, moderately disturbed and highly disturbed stands, respectively, whilst the family Asteraceae had 16 species in the moderately disturbed stand and 14 species in the highly disturbed stand. The number of families represented by a single species was reduced significantly from 33 in the undisturbed stand to 23 in the moderately and 21 in the highly disturbed stand. The similarity index was maximum (71%) between the undisturbed and moderately disturbed stand and minimum (33%) between the undisturbed and highly disturbed stands. The Margalef index, Shannon diversity index and evenness index exhibited a similar trend, with highest values in the moderately disturbed stand. In contrast, the Simpson dominance index was highest in the highly disturbed stand. There was a sharp decline in tree density and basal area from the undisturbed (2103 trees ha–1 and 26.9 m2 ha–1) to the moderately disturbed (1268 trees ha–1 and 18.6 m2 ha–1) and finally to the highly disturbed (852 trees ha–1 and 7.1 m2 ha–1) stand. Density–girth curves depicted a successive reduction in number of trees in higher girth classes from the undisturbed to the moderately and highly disturbed stands. The log-normal dominance–distribution curve in the undisturbed and moderately disturbed stands indicated the complex and stable nature of the community. However, the short-hooked curve obtained for the highly disturbed stand denoted its simple and unstable nature.  相似文献   

20.
Lledó  M. J.  Sánchez  J. R.  Bellot  J.  Boronat  J.  Ibañez  J. J.  Escarré  A. 《Plant Ecology》1992,(1):51-59
When considered as a compartment of nutrients (biomass) and as a flux between compartments (production) vegetation plays an important role in the biogeochemical forest research that is carried out at the Prades research station in two adjacent catchments: L'Avic (51.6 ha) and La Teula (38.5 ha). The forest density at the Prades site, considering both the tree and shrub layers, is 9182 stems ha–1, with 4527 stems ha–1 being the tree layer. The predominant species is Quercus ilex with Arbutus unedo and Phillyrea media less common. The structure of the population, estimated by grouping the numbers of the stems in classes of 2.5 cm, shows a distribution which conforms, in both catchments, to a negative exponential equation following the Yoda law. The distribution observed at different altitudes shows great heterogeneity, the number of stems of Q. ilex increases with altitude, from 4000 stems ha–1 at 800 m, to 14000 stems ha–1 at 1000 m of altitude. The upper and the lower parts of the watershed show differences in forest production that explain this variation. In this paper the influence of human activities and physical factors on the origin of this structure is discussed. The tree and shrub biomass was calculated by applying allometric regressions for the three predominant species and has been estimated as 113.2 t ha–1. The tree layer accounts for 92%. Net production was calculated from annual increases (by differences between the 1981 and 1986 basal area measures) of the woody part and the litterfall. The above-ground net production was about 6.5 t ha–1 year–1, 95.4% of it being from trees and shrubs and only 4.6% from grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号