首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

All eukaryotic nuclear transcribed mRNAs possess the cap structure, consisting of 7-methylguanosine linked by the 5′-5′ triphosphate bridge to the first nucleoside. The goal of the present study is to dissect the enthalpy and entropy changes of association of the mRNA 5′ cap with eIF4E into contributions originating from the interaction of 7-methylguanosine with tryptophan. The model results are discussed in the context of the thermodynamic parameters for the association of eIF4E with synthetic cap analogues.  相似文献   

2.
All eukaryotic mRNAs contain a 5' terminal cap structure, which consists of 7-methylguanosine linked by a 5-5' triphosphate bridge to the first transcribed nucleoside (m7GpppN). Specific recognition of the cap by the eukaryotic initiation factor eIF4E plays a key role in regulation of translation initiation as a rate-limiting step. Using dynamic light scattering (DLS), the apo-form of murine eIF4E (33-217) was shown to aggregate. After addition of m7G7P, progressive deaggregation with the time of incubation in the presence of the cap analogue has been observed.  相似文献   

3.
Studies on the interaction of the murine translation initiation factor 4E with two new-synthesized cap-analogues, modified at C2' of 7-methylguanosine, have been performed by means of the fluorescence titration method. No difference in the binding affinity for eIF4E was observed compared with the "anti reversed" cap analogues, possessing the analogous modifications at C3'. Potential significance of the novel caps as research tools for examination of the nuclear cap binding complex CBC80/20 has been discussed.  相似文献   

4.
Specific recognition and binding of the ribonucleic acid 5′ termini (mRNA 5′ cap) by the eukaryotic translation initiation factor 4E (eIF4E) is a key, rate limiting step in translation initiation. Contrary to mammalian and yeast eIF4Es that discriminate in favor of 7-methylguanosine cap, three out of five eIF4E isoforms from the nematode Caenorhabditis elegans as well as eIF4Es from the parasites Schistosome mansoni and Ascaris suum, exhibit dual binding specificity for both 7-methylguanosine-and N2,N2,7-trimethylguanosine cap. To address the problem of the differences in the mechanism of the cap recognition by those highly homologic proteins, we carried out molecular dynamics simulations in water of three factors, IFE-3 and IFE-5 isoforms from C. elegans and murine eIF4E, in the apo form as well as in the complexes with 7-methyl-GDP and N2,N2,7-trimethyl-GDP. The results clearly pointed to a dynamical mechanism of discrimination between each type of the cap, viz. differences in mobility of the loops located at the entrance into the protein binding pockets during the cap association and dissociation. Additionally, our data showed that the hydrogen bond involving the N2-amino group of 7-methylguanosine and the carboxylate of glutamic acid was not stable. The dynamic mechanism proposed here differs from a typical, static one in that the differences in the protein-ligand binding specificity cannot be ascribed to formation and/or disruption of well defined stabilizing contacts.  相似文献   

5.
Recognition of the 5' cap by the eukaryotic initiation factor 4E (eIF4E) is the rate-limiting step in the ribosome recruitment to mRNAs. The regular cap consists of 7-monomethylguanosine (MMG) linked by a 5'-5' triphosphate bridge to the first transcribed nucleoside, while some primitive eukaryotes possess a N (2), N (2),7-trimethylguanosine (TMG) cap structure as a result of trans splicing. Mammalian eIF4E is highly specific to the MMG form of the cap in terms of association constants and thermodynamic driving force. We have investigated conformational changes of eIF4E induced by interaction with two cap analogues, 7-methyl-GTP and N (2), N (2),7-trimethyl-GTP. Hydrogen-deuterium exchange and electrospray mass spectrometry were applied to probe local dynamics of murine eIF4E in the apo and cap-bound forms. The data show that the cap binding induces long-range conformational changes in the protein, not only in the cap-binding pocket but also in a distant region of the 4E-BP/eIF4G binding site. Formation of the complex with 7-methyl-GTP makes the eIF4E structure more compact, while binding of N (2), N (2),7-trimethyl-GTP leads to higher solvent accessibility of the protein backbone in comparison with the apo form. The results suggest that the additional double methylation at the N (2)-amino group of the cap causes sterical effects upon binding to mammalian eIF4E which influence the overall solution dynamics of the protein, thus precluding formation of a tight complex.  相似文献   

6.
During eukaryotic translation initiation, the 43 S ribosomal pre-initiation complex is recruited to the 5'-end of an mRNA through its interaction with the 7-methylguanosine cap, and it subsequently scans along the mRNA to locate the start codon. Both mRNA recruitment and scanning require the removal of secondary structure within the mRNA. Eukaryotic translation initiation factor 4A is an essential component of the translational machinery thought to participate in the clearing of secondary structural elements in the 5'-untranslated regions of mRNAs. eIF4A is part of the 5'-7-methylguanosine cap-binding complex, eIF4F, along with eIF4E, the cap-binding protein, and the scaffolding protein eIF4G. Here, we show that Saccharomyces cerevisiae eIF4F has a strong preference for unwinding an RNA duplex with a single-stranded 5'-overhang versus the same duplex with a 3'-overhang or without an overhang. In contrast, eIF4A on its own has little RNA substrate specificity. Using a series of deletion constructs of eIF4G, we demonstrate that its three previously elucidated RNA binding domains work together to provide eIF4F with its 5'-end specificity, both by promoting unwinding of substrates with 5'-overhangs and inhibiting unwinding of substrates with 3'-overhangs. Our data suggest that the RNA binding domains of eIF4G provide the S. cerevisiae eIF4F complex with a second mechanism, in addition to the eIF4E-cap interaction, for directing the binding of pre-initiation complexes to the 5'-ends of mRNAs and for biasing scanning in the 5' to 3' direction.  相似文献   

7.
Electric charge distribution in mRNA 5' cap terminus has been exhaustively characterized in respect to the affinity for cap-binding proteins. Formation of the stacked configuration of positively charged 7-methylguanine in between two aromatic amino acid rings, known as sandwich cation-pi stacking, is thought to be prerequisite for the specific recognition of the cap by eukaryotic initiation factor eIF4E; i.e., discrimination between the cap and nucleotides without the methyl group at N(7). Nuclear magnetic resonance spectroscopy of (15)N/(13)C-double-labeled 7-methylguanosine 5'-triphosphate and 7-methylguanosine, as well as their unsubstituted counterparts, GTP and guanosine, yielded characteristic changes of the electron-mediated spin-spin couplings and chemical shifts due to the methylation at N(7). The experimentally measured changes of the nuclear magnetic resonance parameters have been analyzed in respect to the electric charge distribution calculated by means of quantum chemical methods, and interpreted in terms of new proposed positive charge localization in the 7-methylguanine five-member ring.  相似文献   

8.
Recognition of the 5'-cap structure of mRNA by eIF4E is a critical step in the recruitment of most mRNAs to the ribosome. In Caenorhabditis elegans, approximately 70% of mRNAs contain an unusual 2,2,7-trimethylguanosine cap structure as a result of trans-splicing onto the 5' end of the pre-mRNA. The characterization of three eIF4E isoforms in C. elegans (IFE-1, IFE-2, and IFE-3) was reported previously. The present study describes two more eIF4E isoforms expressed in C. elegans, IFE-4 and IFE-5. We analyzed the requirement of each isoform for viability by RNA interference. IFE-3, the most closely related to mammalian eIF4E-1, binds only 7-methylguanosine caps and is essential for viability. In contrast, three closely related isoforms (IFE-1, IFE-2, and IFE-5) bind 2,2, 7-trimethylguanosine caps and are partially redundant, but at least one functional isoform is required for viability. IFE-4, which binds only 7-methylguanosine caps, is most closely related to an unusual eIF4E isoform found in plants (nCBP) and mammals (4E-HP) and is not essential for viability in any combination of IFE knockout. ife-2, ife-3, ife-4, and ife-5 mRNAs are themselves trans-spliced to SL1 spliced leaders. ife-1 mRNA is trans-spliced to an SL2 leader, indicating that its gene resides in a downstream position of an operon.  相似文献   

9.
All eukaryotic mRNAs contain a 5′ terminal cap structure, which consists of 7-methylguanosine linked by a 5′-5′ triphosphate bridge to the first transcribed nucleoside (m7GpppN). Specific recognition of the cap by the eukaryotic initiation factor eIF4E plays a key role in regulation of translation initiation as a rate-limiting step. Using dynamic light scattering (DLS), the apo-form of murine eIF4E (33–217) was shown to aggregate. After addition of m7GTP, progressive deaggregation with the time of incubation in the presence of the cap analogue has been observed.  相似文献   

10.
Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed in many cancers deregulating translational control of the cell cycle. mRNA 5′ cap analogs targeting eIF4E are small molecules with the potential to counteract elevated levels of eIF4E in cancer cells. However, the practical utility of typical cap analogs is limited because of their reduced cell membrane permeability. Transforming the active analogs into their pronucleotide derivatives is a promising approach to overcome this obstacle. 7-Benzylguanosine monophosphate (bn7GMP) is a cap analog that has been successfully transformed into a cell-penetrating pronucleotide by conjugation of the phosphate moiety with tryptamine. In this work, we explored whether a similar strategy is applicable to other cap analogs, particularly phosphate-modified 7-methylguanine nucleotides. We report the synthesis of six new tryptamine conjugates containing N7-methylguanosine mono- and diphosphate and their analogs modified with thiophosphate moiety. These new potential pronucleotides and the expected products of their activation were characterized by biophysical and biochemical methods to determine their affinity towards eIF4E, their ability to inhibit translation in vitro, their susceptibility to enzymatic degradation and their turnover in cell extract. The results suggest that compounds containing the thiophosphate moiety may act as pronucleotides that release low but sustainable concentrations of 7-methylguanosine 5′-phosphorothioate (m7GMPS), which is a translation inhibitor with in vitro potency higher than bn7GMP.  相似文献   

11.
Measurements of interaction of 7-methyl-GTP eIF4E from S. cerevisiae were performed by means of two methods: Isothermal Titration Calorimetry (ITC) and fluorescence titration. The equilibrium association constants (Kas) derived from the two methods show significantly different affinity of yeast eIF4E for the mRNA 5' cap than those of the murine and human proteins. The observed differences in the Kas values and the enthalpy changes of the association (deltaH(o)) suggest some dissimilarity in the mode of binding and stabilization of cap in the complexes with eIF4E from various sources.  相似文献   

12.
13.
In eukaryotic cells, protein synthesis is a complex and multi-step process that has several mechanisms to start the translation including cap-dependent and cap-independent initiation. The translation control of eukaryotic gene expression occurs principally at the initiation step. In this context, it is critical that the eukaryotic translation initiation factor eIF4E bind to the 7-methylguanosine (m7G) cap present at the 5′-UTRs of most eukaryotic mRNAs. Combined with other initiation factors, eIF4E mediates the mRNA recruitment on ribosomes to start the translation. Moreover, the eIF4E nuclear bodies are involved in the export of specific mRNAs from the nucleus to the cytoplasm. In this review, we focus on the eIF4E structure and its physiological functions, and describe the role of eIF4E in cancer development and progression and the current therapeutic strategies to target eIF4E.  相似文献   

14.
The recognition of the 5'mRNA cap structure m7G(5')ppp(5')N by one of the components of the initiation translation machinery, the eIF4E factor, plays a pivotal role in regulation of the protein synthesis. In the present study we have shown two opposing roles of the cap phosphate chain in the specific eIF4E-cap interaction. The extension of the phosphate chain enhances the binding of the cap to the unphosphorylated eIF4E but destabilises the eIF4E-cap complex in case of the phosphorylated protein.  相似文献   

15.
16.
Translation initiation factor 4E   总被引:6,自引:0,他引:6  
Translation initiation factor 4E (eIF4E) binds the 7-methylguanosine cap structure of mRNA and mediates recruitment of mRNA to ribosomes, with the potential of regulating the overall rate of translation and discriminating between different RNAs. Increased translation is required for progress through the cell cycle, and it is therefore not surprising that eIF4E has oncogenic properties when overexpressed. The function of this review is to summarise what is known about eIF4E gene and protein structure, biological function and medical relevance.  相似文献   

17.
18.
The eukaryotic initiation factor 4F (eIF4F) is thought to be the first factor to bind mRNA during 7-methylguanosine (m7G) cap-dependent translation initiation. The multipartite eIF4F contains the cap-binding protein eIF4E, and it is assumed that eIF4F binds mRNAs primarily at the 5′ m7G cap structure. We have analyzed equilibrium binding of rabbit eIF4F to a series of diverse RNAs and found no impact of the 5′-cap on the stability of eIF4F-RNA complexes. However, eIF4F preferentially and cooperatively binds to RNAs with a minimum length of ∼60 nucleotides in vitro. Furthermore, translation activity in rabbit reticulocyte lysate is strongly inhibited by RNAs exceeding this length, but not by shorter ones, consistent with the notion that eIF4F in its physiological environment preferentially binds longer RNAs, too. Collectively, our results indicate that intrinsic RNA binding by eIF4F depends on a minimal RNA length, rather than on cap recognition. The nonetheless essential m7G cap may either function at steps subsequent to eIF4F-RNA binding, or other factors facilitate preferential binding of eIF4F to the m7G cap.  相似文献   

19.
The activity of the eukaryotic translation initiation factor eIF4E is modulated through conformational response to its ligands. For example, eIF4G and eIF4E-binding proteins (4E-BPs) modulate cap affinity, and thus physiological activity of eIF4E, by binding a site distal to the 7-methylguanosine cap-binding site. Further, cap binding substantially modulates eIF4E's affinity for eIF4G and the 4E-BPs. To date, only cap-bound eIF4E structures were reported. In the absence of structural information on the apo form, the molecular underpinnings of this conformational response mechanism cannot be established. We report here the first cap-free eIF4E structure. Apo-eIF4E exhibits structural differences in the cap-binding site and dorsal surface relative to cap-eIF4E. Analysis of structure and dynamics of apo-eIF4E, and changes observed upon ligand binding, reveal a molecular basis for eIF4E's conformational response to these ligands. In particular, alterations in the S4-H4 loop, distal to either the cap or eIF4G binding sites, appear key to modulating these effects. Mutation in this loop mimics these effects. Overall, our studies have important implications for the regulation of eIF4E.  相似文献   

20.
Weak binding affinity of human 4EHP for mRNA cap analogs   总被引:1,自引:0,他引:1       下载免费PDF全文
Ribosome recruitment to the majority of eukaryotic mRNAs is facilitated by the interaction of the cap binding protein, eIF4E, with the mRNA 5' cap structure. eIF4E stimulates translation through its interaction with a scaffolding protein, eIF4G, which helps to recruit the ribosome. Metazoans also contain a homolog of eIF4E, termed 4EHP, which binds the cap structure, but not eIF4G, and thus cannot stimulate translation, but it instead inhibits the translation of only one known, and possibly subset mRNAs. To understand why 4EHP does not inhibit general translation, we studied the binding affinity of 4EHP for cap analogs using two methods: fluorescence titration and stopped-flow measurements. We show that 4EHP binds cap analogs m(7)GpppG and m(7)GTP with 30 and 100 lower affinity than eIF4E. Thus, 4EHP cannot compete with eIF4E for binding to the cap structure of most mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号