首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth and nitrate reductase activity were measured in Paul's Scarlet rose cell suspensions, cultured in media purified from molybdenum and containing nitrate or urea as sole nitrogen source with or without added Mo. Urea could replace nitrate to yield 80% of the fresh weight in nitrate medium. Nitrate reductase activities were compared by in vivo and in vitro assays. The latter varied due to inactivation during extraction. Compared with activities in cells in complete NO3 - medium, activity in NO3 --Mo cells was reduced to 30% and, in urea-grown cells, to trace amounts. Increases in nitrate reductase activity were found when NO3 - alone was added to NO3 - or urea+Mo cultures. In NO3 --Mo cultures, Mo alone or with NO3 - caused a similar increase in activity, whereas urea-Mo cultures required both NO3 - and Mo for enzyme induction.Abbreviations FAD flavin adenine dinucleotide - Mo molybdenum - NADH reduced nicotinamide adenine dinucleotide - NO3 -+Mo standard MX1 culture medium - NO3 --Mo MX1 medium purified of Mo and used for continuous subculture with nitrate - NR nitrate reductase - PSR Paul's Scarlet rose - PVP polyvinylpyrrolidone - U urea - U+Mo MX1 medium containing urea instead of nitrate - U-Mo MX1 medium containing urea instead of nitrate and also purified of Mo  相似文献   

2.
Catabolism of Phloroglucinol by the Rumen Anaerobe Coprococcus   总被引:7,自引:2,他引:5       下载免费PDF全文
A rumen isolate, Coprococcus, sp. Pe15, was found to carry phloroglucinol reductase, which catalyzed the initial step in the breakdown of phloroglucinol. The organism uses phloroglucinol as the sole source of carbon and energy when grown in the absence of oxygen. Induced levels of enzyme were detected in cells grown either on phloroglucinol or on other carbon sources in the presence of limiting quantities of phloroglucinol. Although the organism is a strict anaerobe, the enzyme from anaerobically grown cells was insensitive to air. The partially purified enzyme required reduced nicotinamide adenine dinucleotide phosphate as an electron donor and was specific for phloroglucinol. However, partial enzyme activity (14 to 17%) was also detected in the presence of 2-methyl-1,4-naphthoquinone but not in the presence of several other phenolic compounds. The enzyme exhibited a higher affinity for phloroglucinol than for reduced nicotinamide adenine dinucleotide phosphate, with Km values of 3.0 × 10−5 M and 29.0 × 10−5 M, respectively. The optimum pH for maximal enzyme activity was 7.4, and the molecular weight of the native protein was about 130,000, as determined by the Sephadex gel filtration technique.  相似文献   

3.
Acid-treated extracts of Escherichia coli were tested for their ability to restore reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase activity to an extract of a Neurospora nit-1 mutant which produces a defective enzyme. With wild-type E. coli this complementation activity was more readily detected in the cytoplasmic fraction, although the nitrate reductase activity was found primarily in the particulate fraction. chlB mutants of E. coli appeared to have more complementation activity in the cytoplasm than was observed in the wild type, but no activity in the particulate fraction. The other chl mutants had little or no activity in either fraction. These results suggest that chlB mutants can produce a component or cofactor which is missing in the other mutants and in the Neurospora mutant, but cannot transfer it to the nitrate reductase enzyme.  相似文献   

4.
The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity.  相似文献   

5.
Mayne BC 《Plant physiology》1971,47(5):600-605
Isolated mesophyll cells and bundle sheath cells of Digitaria sanguinalis were used to study the light-absorbing pigments and electron transport reactions of a plant which possesses the C4-dicarboxylic acid cycle of photosynthesis. Absorption spectra and chlorophyll determinations are presented showing that mesophyll cells have a chlorophyll a-b ratio of about 3.0 and bundle sheath cells have a chlorophyll a-b ratio of about 4.5. The absorption spectrum of bundle sheath cells has a greater absorption in the 700 nm region at liquid nitrogen temperature, and there is a relatively greater amount of a pigment absorbing at 670 nm in the bundle sheath cells compared to the mesophyll cells. Fluorescence emission spectra, at liquid nitrogen temperature, of mesophyll cells have a fluorescence 730 nm-685 nm ratio of about 0.82 and bundle sheath cells have a ratio of about 2.84. The reversible light-induced absorption change in the region of P700 absorption is similar in both cell types but bundle sheath cells exhibit about twice as much total P700 change as mesophyll cells on a total chlorophyll basis. The delayed light emission of bundle sheath cells is about one-half that of mesophyll cells. Both mesophyll cells and bundle sheath cells evolve oxygen in the presence of Hill oxidants with the mesophyll cells exhibiting about twice the activity of bundle sheath cells, and both activities are inhibited by 1 μM 3-(3,4-dichlorophenyl)-1, 1-dimethylurea. Ferredoxin nicotinamide adenine dinucleotide phosphate reductase is present in both cells although it is about 3- or 4-fold higher in mesophyll cells than in bundle sheath cells. Glyceraldehyde 3-P dehydrogenases, both nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, are equally distributed in the two cell types on a chlorophyll basis. Malic enzyme is localized in the bundle sheath cells.  相似文献   

6.
Hydrogenase activity and the H2-fumarate electron transport system in a carbohydrate-fermenting obligate anaerobe, Bacteroides fragilis, were investigated. In both whole cells and cell extracts, hydrogenase activity was demonstrated with methylene blue, benzyl viologen, flavin mononucleotide, or flavin adenine dinucleotide as the electron acceptor. A catalytic quantity of benzyl viologen or ferredoxin from Clostridium pasteurianum was required to reduce nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate with H2. Much of the hydrogenase activity appeared to be associated with the soluble fraction of the cell. Fumarate reduction to succinate by H2 was demonstrable in cell extracts only in the presence of a catalytic quantity of benzyl viologen, flavin mononucleotide, flavin adenine dinucleotide, or ferredoxin from C. pasteurianum. Sulfhydryl compounds were not required for fumarate reduction by H2, but mercaptoethanol and dithiothreitol appeared to stimulate this activity by 59 and 61%, respectively. Inhibition of fumarate reduction by acriflavin, rotenone, 2-heptyl-4-hydroxyquinoline-N-oxide, and antimycin A suggest the involvement of a flavoprotein, a quinone, and cytochrome b in the reduction of fumarate to succinate. The involvement of a quinone in fumarate reduction is also apparent from the inhibition of fumarate reduction by H2 when cell extracts were irradiated with ultraviolet light. Based on the evidence obtained, a possible scheme for the flow of electrons from H2 to fumarate in B. fragilis is proposed.  相似文献   

7.
The biochemical basis for sulfite accumulation by sulfate-using revertants of Salmonella pullorum was determined. All of the sulfate-using mutants isolated from wild-type S. pullorum accumulated sulfite when grown at 37 but not at 25 C. The specific activity of reduced nicotinamide adenine dinucleotide (NADPH)-dependent sulfite reductase (H 2S-NADP oxidoreductase, EC 1.8.1.2) and of reduced methyl viologen (MVH)-dependent sulfite reductase (H 2S-MV oxidoreductase), in extracts prepared from cells incubated at 37 C, declined as the incubation period lengthened. However, the specific activity of both reductases from cells incubated at 25 C did not decline. Thermolability of cell-free NADPH-dependent sulfite reductase from cells of S. pullorum incubated at 37 C was greater than the lability of this enzyme either from cells of S. typhimurium incubated at 37 C or from cells of S. pullorum incubated at 25 C. Cells cultured at 37 C continued to accumulate sulfite when the incubation temperature was shifted to 25 C; cells cultured at 25 C and shifted to 37 C accumulated no sulfite, whereas these cells shifted to 41 C accumulated sulfite. It was concluded that the configuration of the sulfite reductase of S. pullorum strain 6–18 is a function of the incubation temperature at which synthesis occurs.  相似文献   

8.
J. Diez  A. Chaparro  J. M. Vega  A. Relimpio 《Planta》1977,137(3):231-234
In the green alga Ankistrodesmus braunii, all the activities associated with the nitrate reductase complex (i.e., NAD(P)H-nitrate reductase, NAD(P)H-cytochrome c reductase and FMNH2-or MVH-nitrate reductase) are nutritionally repressed by ammonia or methylamine. Besides, ammonia or methylamine promote in vivo the reversible inactivation of nitrate reductase, but not of NAD(P)H-cytochrome c reductase. Subsequent removal of the inactivating agent from the medium causes reactivation of the inactive enzyme. Menadione has a striking stimulation on the in vivo reactivation of the inactive enzyme. The nitrate reductase activities, but not the diaphorase activity, can be inactivated in vitro by preincubating a partially purified enzyme preparation with NADH or NADPH. ADP, in the presence of Mg2+, presents a cooperative effect with NADH in the in vitro inactivation of nitrate reductase. This effect appears to be maximum at a concentration of ADP equimolecular with that of NADH.Abbreviations ADP Adenosine-5-diphosphate - AMP Adenosine-5-monophosphate - ATP Adenosine-5-triphosphate - FAD Flavin adenine dinucleotide - FMNH2 Flavin adenine mononucleotide, reduced form - GDP Guanosine-5-diphosphate - MVH Methyl viologen, reduced form - NADH Nicotinamide adenine dinucleotide, reduced form - NADPH Nicotinamide adenine dinucleotide phosphate, reduced form  相似文献   

9.
Levels of nitrate reductase activity (EC 1.9.6.1.) as high as 11 μmoles nitrite produced/hour gram fresh weight were found in barley (Hordeum vulgare cv. Compana) roots grown under low oxygen conditions. Roots of plants given identical treatment under sterile conditions did not develop the high levels of nitrate reductase activity. The results suggest that the buildup of particulate, reduced viologen-utilizing nitrate reductase reported in barley roots may be caused by bacterial contamination. The nitrate reductase activity in roots grown under low oxygen conditions was not specific for reduced nicotinamide adenine dinucleotide like the assimilatory nitrate reductase (EC 1.6.6.1.) normally found in aerated plant roots.  相似文献   

10.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

11.
A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide.  相似文献   

12.
Work is described which suggests that glutamine synthetase (GS) could play an important and direct regulatory role in the control of NO3 assimilation by the alga. In both steady-state cells and ones disturbed physiologically by changes in light or nitrogen supply the assimilation of NO3 appears to be limited by the activity of GS. Moreover although in normal cells NH3 can completely inhibit NO3 uptake, promote the deactivation of nitrate reductase (NR) and repress the synthesis of NR and nitrite reductase (NIR), these controls are relaxed in cells in which GS is deactivated by treatment with L-methionine-DL-sulfoximine (MSO). It is proposed that the reversible deactivation of GS may play an important part in the regulation of NO3 assimilation although it is still not clear whether the enzyme itself or products of its metabolism are responsible.Abbreviations GS glutamine synthetase - GSs glutamine synthetase, synthetase activity - GSt glutamine synthetase, transferase activity - NR nitrate reductase - NIR nitrite reductase - GDH glutamate dehydrogenase - CHX cycloheximide - MSO L-methionine-DL-sulfoximine - FAD flavine adenine dinucleotide  相似文献   

13.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

14.
The mechanism underlying the sharp increase in activity of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris forma tertia (strain 211 8k) during the first hour of the 7 hours/5 hours light/dark cycle was investigated. Using the method of density labeling and isopycnic centrifugation, it could be demonstrated that this rapid increase in activity is based on light-mediated activation rather than de novo synthesis of the enzyme. The problematic nature of cycloheximide specificity and models of nitrate reductase activation are discussed.  相似文献   

15.
Synthesis and degradation of barley nitrate reductase   总被引:21,自引:13,他引:8       下载免费PDF全文
Nitrate and light are known to modulate barley (Hordeum vulgare L.) nitrate reductase activity. The objective of this investigation was to determine whether barley nitrate reductase is regulated by enzyme synthesis and degradation or by an activation-inactivation mechanism. Barley seedling nitrate reductase protein (cross-reacting material) was determined by rocket immunoelectrophoresis and a qualitative immunochemical technique (western blot) during the induction and decay of nitrate reductase activity. Nitrate reductase cross-reacting material was not detected in root or shoot extracts from seedlings grown without nitrate. Low levels of nitrate reductase activity and cross-reacting material were observed in leaf extracts from plants grown on nitrate in the dark. Upon nitrate induction or transfer of nitrate-grown etiolated plants to the light, increases in nitrate reductase activity were positively correlated with increases in immunological cross-reactivity. Root and shoot nitrate reductase activity and cross-reacting material decreased when nitrate-induced seedlings were transferred to a nitrate-free nutrient solution or from light to darkness. These results indicate that barley nitrate reductase levels are regulated by de novo synthesis and protein degradation.  相似文献   

16.
The fluorescent 1,N6-ethenoadenosine derivatives of adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, 3′:5′-cyclic adenosine monophosphate, adenosine and nicotinamide adenine dinucleotide have been prepared. Paper and thin layer chromatographic purification methods have been developed. Nuclear magnetic resonance and mass spectrum data indicate that only the purine ring has been modified.The 1,N6-ethenoadenosine triphosphate had about 70% of the activity of adenosine triphosphate as a substrate for total adenosine triphosphatase activity of hypophysectomized rat liver membranes. The 1,N6-ethenoadenosine diphosphate had about 86% of the activity of adenosine diphosphate as a substrate for adenosine diphosphatase of hypophysectomized rat liver membranes. The 1,N6-etheno derivative of nicotinamide adenine dinucleotide had about 8% of the activity of nicotinamide adenine dinucleotide as a substrate for nicotinamide adenine dinucleotide glycohydrolase and about 54% of the activity of nicotinamide adenine dinucleotide as a substrate for nicotinamide adenine dinucleotide pyrophosphatase of hypophysectomized rat liver membranes.Km's for the ATPase, ADPase and yeast alcohol dehydrogenase using ε-ATP and ε-ADP and ε-NAD as substrates are presented.  相似文献   

17.
The essential coenzyme nicotinamide adenine dinucleotide (NAD+) plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis), as in plants, or nicotinamide, as in mammals (salvage synthesis). The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO), quinolinate synthetase (QS), quinolate phosphoribosyltransferase (QPT), nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), and NAD+ synthetase (NS). Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1) or plasmids with cloned genes (nic1-1 and nic15-1) into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT) constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1) has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.  相似文献   

18.
Microsomes from etiolated wheat (Triticum aestivum L. cv Etoile de Choisy) shoots catalyzed the reduced nicotinamide adenine dinucleotide phosphate-dependent hydroxylation of lauric acid predominantly at the subterminal or (ω-1) position (65%). Minor amounts of 10-hydroxy- (31%) and 9-hydroxylaurate (4%) were also formed. The reaction was catalyzed by cytochrome P-450, since enzyme activity was strongly inhibited by tetcyclacis, carbon monoxide, and antibodies against NADPH-cytochrome c (P-450)-reductase. The apparent Km for lauric acid was estimated to be 8.5 ± 2.0 μm. Seed treatment with the safener naphthalic acid anhydride or treatment of seedlings with phenobarbital increased cytochrome P-450 content and lauric acid hydroxylase (LAH) activity of the microsomes. A combination of both treatments further stimulated LAH activity. A series of radiolabeled unsaturated lauric acid analogs (8-, 9-, 10-, and 11-dodecenoic acids) was used to explore the regioselectivity and catalytic capabilities of induced wheat microsomes. It has been found that wheat microsomes catalyzed the reduced nicotinamide adenine dinucleotide phosphate-dependent epoxidation of sp2 carbons concurrently with hydroxylation at saturated positions. The regioselectivity of oxidation of the unsaturated substrates and that of lauric acid were similar. Preincubation of wheat microsomes with reduced nicotinamide adenine dinucleotide phosphate and 11-dodecenoic acid resulted in a partial loss of LAH activity.  相似文献   

19.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

20.
Indoleamine 2,3-dioxygenases (IDOs) − belonging in the heme dioxygenase family and degrading tryptophan − are responsible for the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As such, they are expressed by a variety of invertebrate and vertebrate species. In mammals, IDO1 has remarkably evolved to expand its functions, so to become a prominent homeostatic regulator, capable of modulating infection and immunity in multiple ways, including local tryptophan deprivation, production of biologically active tryptophan catabolites, and non-enzymatic cell-signaling activity. Much like IDO1, arginase 1 (Arg1) is an immunoregulatory enzyme that catalyzes the degradation of arginine. Here, we discuss the possible role of amino-acid degradation as related to the evolution of the immune systems and how the functions of those enzymes are linked by an entwined pathway selected by phylogenesis to meet the newly arising needs imposed by an evolving environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号