首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pituitary, gonadal and adrenal activity were compared in free-living, adult African buffalo bulls during the breeding and nonbreeding seasons. Frequent blood samples were collected for 2 h from anaesthetized bulls treated intravenously with saline, gonadotrophin-releasing hormone (GnRH, 200 micrograms), human chorionic gonadotrophin (hCG, 10,000 i.u.) or adrenocorticotrophic hormone (ACTH, 1.5 mg). Electroejaculates also were collected from anaesthetized bulls during the breeding and nonbreeding seasons. Pretreatment testosterone concentrations among bulls varied more during the breeding (0.17-23.0 ng/ml) than the nonbreeding (0.15-2.21 ng/ml) season. The variation within the breeding season was attributed to 8 of 25 bulls producing higher (P less than 0.05) serum testosterone (High-T; 16.28 +/- 2.03 ng/ml) and testicular LH receptor (1.53 +/- 0.22 fmol/mg testis) concentrations compared with their seasonal counterparts (Low-T; 0.95 +/- 0.26 ng/ml; 0.38 +/- 0.04 fmol/mg) or with all bulls during the nonbreeding season (0.90 +/- 0.27 ng/ml; 0.31 +/- 0.04 fmol/mg). The magnitude of GnRH- and hCG-induced increases in serum testosterone was similar (P greater than 0.05) between Low-T bulls and bulls during the nonbreeding season. In the High-T animals treated with GnRH or hCG, serum testosterone did not increase, suggesting that secretion was already maximal. Peak serum LH concentrations after GnRH were greater (P less than 0.05) in bulls during the nonbreeding than the breeding season; FSH responses were similar (P greater than 0.05). ACTH treatment did not increase serum cortisol concentrations above the 2-fold increase measured in bulls treated with saline, hCG and GnRH (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mohamed FH  Cox JE 《Theriogenology》1988,29(4):859-865
The administration of 0.5 mg of long-acting adrenocorticotrophic hormone (ACTH, Synacthen-Depot) twice daily for 5.5 d to four rams outside the breeding season caused marked rises in plasma cortisol without any evidence of adrenal depletion. This treatment also caused marked rises in basal plasma follicle stimulating hormone (FSH) concentrations which remained high even after cessation of treatment. Plasma FSH responses to 5 ug of gonadotrophin releasing hormone (GnRH) were consistently observed and ACTH treatment increased the FSH response to GnRH. In contrast, spontaneous fluctuations in the plasma luteinizing hormone (LH) and testosterone concentrations were abolished by ACTH treatment. The quantity of testosterone released after GnRH (estimated by the maximum values reached and by the area under the response curve) was also suppressed while that of LH was only slightly lower. A comparison of the results of this experiment with those obtained in rams during the breeding season showed that the effects of ACTH on LH and testosterone were more marked during the breeding season. In contrast, the effect of ACTH on FSH is to increase the latter during the nonbreeding season, whereas no effect was observed during the breeding season.  相似文献   

3.
In castrated rams (Romney and Poll Dorset, n = 8 for each breed), inhibition by testosterone treatment (administered via Silastic capsules) of luteinizing hormone (LH) pulse frequency, basal and mean LH concentrations, mean follicle-stimulating hormone (FSH) concentration, and the peak and total LH responses to exogenous gonadotrophin-releasing hormone (GnRH) were significantly (P less than 0.01) greater during the nonbreeding than during the breeding season. Poll Dorset rams were less sensitive to testosterone treatment than Romney rams. In rams not receiving testosterone treatment, LH pulse frequency was significantly (P less than 0.05) lower during the nonbreeding season than during the breeding season in the Romneys (15.8 +/- 0.9 versus 12.0 +/- 0.4 pulses in 8 h), but not in the Poll Dorsets (13.6 +/- 1.2 versus 12.8 +/- 0.8 pulses in 8 h). It is concluded that, in rams, season influences gonadotrophin secretion through a steroid-independent effect (directly on hypothalamic GnRH secretion) and a steroid-dependent effect (indirectly on the sensitivity of the hypothalamo-pituitary axis to the negative feedback of testosterone). The magnitude of these effects appears to be related to the seasonality of the breed.  相似文献   

4.
Testes and blood samples were obtained from 201 stallions aged 6 months to 20 years in either December-January (nonbreeding season) or June-July (breeding season) to study the effect of age and season on reproductive parameters. Seasonal differences in the Sertoli cell population of adult (4-20 years old) horses were characterized by a 36% larger number of Sertoli cells in the breeding season than in the nonbreeding season. Seasonal elevation in the Sertoli cell population was associated with an increase in testicular weight and daily sperm production per testis (DSP/testis). Concentrations of luteinizing hormone (LH) and testosterone in serum varied with season. Although follicle-stimulating hormone (FSH) concentrations also tended to be higher in the breeding season, this trend was not statistically significant (P less than 0.08). Sertoli cell numbers averaged over both seasons, like testicular weights, increased with age until 4-5 years of age, but were stabilized thereafter. This age-related difference was also associated with increased concentrations of FSH, LH and testosterone, and with increased DSP/testis. The Sertoli cell population was capable of increasing in the adult horse by fluctuating its size with season. The number of elongated spermatids per Sertoli cell over both seasons increased with age up to 4-5 years of age and was stabilized thereafter. Thus, seasonal and/or age-related differences in DSP/testis were associated with significant elevations in serum concentrations of FSH, LH and testosterone, testicular weights, numbers of elongated spermatids per Sertoli cell and elevation of the Sertoli cell population.  相似文献   

5.
The relationships between testis size, hormone secretion and sperm production were studied during the spring (December) and autumn (May) in rams of two breeds with different breeding seasons and body weights (Corriedale and Australian Merino) maintained on native pastures and under natural photoperiods in Uruguay. Blood samples were collected at 20-min intervals during a 260-360-min period in 13 rams (four Corriedale, nine Australian Merino) during the late spring and autumn. Rams were weighed and testis size was estimated by orchimetry at each time period. Sperm production was estimated during a 2-week period, 2 months before blood collection and during each week following every blood collection. There was no relationship between testicular size and sperm production measured at the same time, nor between live weight and sperm production. In contrast, testicular volume during the late spring was correlated with sperm production in the autumn (r = 0.65; P = 0.02). The autumn serum LH was higher in Corriedale than in Merino rams. LH pulsatility was unaffected by season, but LH pulse frequency tended to be higher in Corriedale than in Merino rams, particularly in the late spring (2.37 versus 1.56 pulses/6 h; P = 0.08). Serum testosterone concentration was similar in both breeds and seasons. FSH levels were higher in the late spring than in the autumn in both breeds (Corriedale: 2.83 +/- 0.48 versus 2.17 +/- 0.24 ng x mL(-1); Merino: 2.23 +/- 0.24 versus 1.88 +/- 0.17 ng x mL(-1)). FSH and testosterone concentrations during the late spring were positively correlated with autumn sperm production (P = 0.07 and P = 0.03, respectively). In conclusion, the present experiment suggests that LH secretion is not a good parameter for the prediction of sperm production. In contrast, in our conditions (breeds and native pastures) testicular size and testosterone or FSH concentrations from the late spring may be used to predict sperm production in the autumn.  相似文献   

6.
An experiment was conducted with four adult, sexually inexperienced Finnish Landrace rams during the ovine nonbreeding (July) and breeding (October) seasons to determine the influence of components of the rams' mating behavior on the secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL), and testosterone. On four occasions in both seasons, blood was collected by jugular venipuncture at 20-min intervals during an 8-hr period while rams were (1) separated from, (2) observing with minimal direct physical contact, (3) mounting without intromission, or (4) mating estrous-induced ewes. In comparison with separation periods, mating activity in July was associated with increased mean LH (P less than 0.05) and testosterone levels and number of LH peaks, while in October, obvious increases were detected in only baseline LH levels (P less than 0.05). Circulating LH and testosterone levels either did not change (July) or were depressed (October) during the mounting and observation periods. FSH levels generally remained unaffected by engagement in the various sexual activities. Although a clear relationship between type of sexual activity and mean PRL levels was not observed in July, activities which appeared to involve the most physical exertion tended to be associated with much higher circulating PRL levels in October. These data suggest (1) the act of ejaculation is important in the induction of increases in LH and testosterone secretion that occur in rams in response to mating activity during the nonbreeding season and (2) excessively stressful sexual activities during the breeding season may alter the pattern of secretion of some reproductive hormones.  相似文献   

7.
During the breeding season, five groups of three ewes were implanted at ovariectomy with 0.36, 0.5, 1.0 and 6.0 cm oestradiol implants or implants containing no steroid. Eleven days after receiving implants, blood samples were taken every 10 min for 6 h; implants were then removed. Treatments were repeated three times during each of two consecutive breeding seasons and four times during the intervening anoestrus. In ovariectomized ewes without steroid treatment, luteinizing hormone (LH) pulse frequency increased from early to mid-breeding season, decreased to a minimum at mid-anoestrus and increased to reach a maximum at the mid-point of the second breeding season, subsequently declining. LH pulse amplitude was inversely related to frequency. Basal serum LH concentrations decreased gradually from the first breeding season to reach a minimum at mid-anoestrus and gradually increased to reach a maximum at the end of the second breeding season. Mean serum LH and follicle-stimulating hormone (FSH) concentrations were higher at the end of the second breeding season compared with the beginning of the first breeding season. All parameters of gonadotrophin secretion were decreased much more by oestradiol during the anoestrus than during the breeding season. LH pulse frequency was decreased during anoestrus and at high oestradiol concentrations during the first breeding season. Apart from LH pulse amplitude, the decreases in all parameters of gonadotrophin secretion were less during the second compared with the first breeding season. The minimum effective dose of oestradiol required to decrease mean and basal serum concentrations of LH during anoestrus was lower than in the breeding season. The minimum effective dose of oestradiol required to decrease mean serum concentrations of FSH was lower in the first compared with the second breeding season. Oestradiol depression of LH pulse amplitude and mean serum concentrations of LH and FSH showed a dose dependency during the breeding season. During anoestrus dose dependency was seen for basal concentrations of LH and mean serum concentrations of LH and FSH. We conclude that significant chronic changes in gonadotrophin secretion occur in the ewe with time after ovariectomy. Sensitivity to oestradiol also changes, and the effects of oestradiol are not always dose dependent. We suggest that the circannual pattern of LH pulse frequency and basal LH secretion are directly linked to the circannual cycle of photoperiod.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The administration of 0.5 mg of long-acting adrenocorticotrophic hormone (ACTH, Synacthen-Depot) twice daily for 5.5 d to four adult rams during the breeding season had no consistent effect on plasma follicle stimulating hormone (FSH) concentrations. In contrast, it suppressed both plasma luteinizing hormone (LH) and testosterone concentrations. The responses to injections of 5 ug of gonadotrophin releasing hormone (GnRH), as measured by maximum concentrations reached and areas under the response curves, were also suppressed. These findings suggest that ACTH exerts its suppressive efects on LH at the pituitary level.  相似文献   

9.
Divergent selection has resulted in two lines of lambs (high and low) that have a 5-fold difference in their ability to release luteinizing hormone (LH) in response to 5 micrograms of gonadotrophin-releasing hormone (GnRH). Baseline gonadotrophin concentrations, the gonadotrophin responses to a GnRH challenge and the concentrations of testosterone and oestradiol were compared in lambs which were castrated at birth and intact lambs from both selection lines at 2, 6, 10 and 20 weeks of age. The pattern of LH and follicle-stimulating hormone (FSH) secretion was similar in the two lines, but differed between the intact and the castrated lambs. Basal LH and FSH secretion were significantly higher in the castrates than in the intact lambs from both selection lines. The high-line lambs had significantly higher basal FSH concentrations at all ages tested and significantly higher basal LH concentrations during the early postnatal period. The magnitude of the gonadotrophin responses to GnRH differed significantly between the intact and the castrated lambs within each line, the amount of gonadotrophins secreted by the castrated lambs being significantly greater. The removal of gonadal negative feedback by castration did not alter the between-line difference in either LH or the FSH response to the GnRH challenge. Throughout the experimental period, the concentration of testosterone in the intact lambs was significantly greater than in the castrated lambs in both selection lines, but no significant difference was seen in the concentrations of oestradiol. No significant between-line differences were found in the peripheral concentrations of testosterone or oestradiol in the intact lambs from the two selection lines. Therefore, despite similar amounts of gonadal negative feedback in the selection lines, there were significant between-line differences in basal gonadotrophin concentrations, at 2 and 6 weeks of age, and in the LH and FSH responses to an exogenous GnRH challenge, at all ages tested. Removal of gonadal negative feedback did not affect the magnitude of the between-line difference in the response of the lines to GnRH stimulation. The results indicate that the effects of selection on gonadotrophin secretion are primarily at the level of the hypothalamo-pituitary complex.  相似文献   

10.
Effects of GnRH, administered via the testicular artery, on testicular steroidogenesis were studied in rams during the non-breeding season. Concentrations of testosterone and 17-hydroxyprogesterone in testicular venous blood showed similar profiles which were identical for GnRH-treated (0.5 ng infused over 60 min or 25 ng injected) and control testes. Increases of testicular venous concentration of both hormones were only marginally reflected in peripheral venous concentrations. Peripheral administration of hCG (200 i.u., i.v.) stimulated testosterone secretion to a larger extent than 17-hydroxyprogesterone secretion in 10/11 rams, GnRH-treated and control testes showing identical responses. High testicular venous concentrations of both hormones after administration of GnRH were paralleled by increased concentrations of endogenous LH. These LH peaks were evoked by 25 ng GnRH in 7/8 rams. The observed effects of GnRH treatment on testicular steroid secretion thus cannot be considered to be the result of direct stimulation of steroidogenesis by GnRH.  相似文献   

11.
Seasonal changes in plasma immunoreactive (ir-) inhibin, testosterone, LH, and FSH concentrations were examined in five sexually mature male Japanese monkeys (Macaca fuscata fuscata) housed indoors individually, to explore the reproductive cyclicity in the male. Blood samples were collected monthly throughout one year, and testicular size, semen volume, and number of sperm in the semen were ascertained at the same time in the same animals. Semen samples were obtained by penile electrostimulation. The results showed a clear seasonal increase in all parameters: plasma ir-inhibin, testosterone, testicular size, semen volume, and total number of sperm in the liquid portion of the semen during the autumn and winter months in synchrony with the natural breeding season. In contrast, plasma LH and FSH remained unchanged throughout the year, although plasma FSH tended to increase during the breeding season concomitant with an increase in plasma ir-inhibin. A significant positive correlation between FSH and ir-inhibin was observed in two of five monkeys. The positive correlations between plasma ir-inhibin and testicular activities during both the developing and regressing phases of the testicular cycle indicate that plasma ir-inhibin is a useful indicator of testicular activity as well as an indicator of Sertoli cell function in the Japanese monkey.  相似文献   

12.
Concentrations of gonadotrophins and prolactin were recorded in pony stallions castrated during the early breeding season, to examine the regulatory role of the gonad at a time when testosterone has been postulated to exert positive feedback on LH secretion. Further, gonadotrophin concentrations in geldings are reported to return to values within the normal range of the entire stallion. In an attempt to characterize this species-specific reversal, the gonadotrophin concentrations of 6 male ponies castrated on 25 March were monitored for 4 months, and 4 stallions were used to generate control data. Blood samples were collected daily, from 3 d before to 10 d after castration (Day 0), and weekly thereafter until Day 122. The pituitary response to castration was immediate. Castration resulted in a previously unreported, dramatic (13-fold) but transient (3 d) surge in circulating concentrations of LH. Concentrations of LH and FSH increased in a logarithmically scaled (LH, R2 = 0.77; FSH, R2 = 0.93) manner over the subsequent 5 wk, during which temporal changes in concentrations of both hormones were strongly correlated (R2 = 0.97). The ratio of plasma gonadotrophin concentrations was consistent throughout (LH:FSH, 1.43 +/- 0.04). Maximal concentrations of LH (20.58 +/- 1.97 ng/mL, Day 34.8 +/- 3.2) were attained approximately 2 wk before the peak in FSH (16.99 +/- 1.97 ng/mL, Day 49.7 +/- 3.0). Plasma gonadotrophin concentrations exceeded those of entire stallions throughout the study. The equine testes inhibited LH secretion during the early breeding season, and no chronic decrease in plasma gonadotrophin concentrations was recorded. However, the LH surge evident for 3 d immediately afer castration, may be related to the dynamic seasonal interaction between gonadal steroids and the regulation of pituitary gonadotrophin release.  相似文献   

13.
Serum concentrations of LH, FSH and testosterone were measured monthly throughout the year in male bush rats. Testicular size and ultrastructure, LH/hCG, FSH and oestradiol receptors and the response of the pituitary to LHRH were also recorded. LH and FSH rose in parallel with an increase in testicular size after the winter solstice with peak gonadotrophin levels in the spring (September). The subsequent fall in LH and FSH levels was associated with a rise in serum testosterone which reached peak levels during summer (December and January). In February serum testosterone levels and testicular size declined in parallel, while the pituitary response to an LHRH injection was maximal during late summer. The number of LH/hCG, FSH and oestradiol receptors per testis were all greatly reduced in the regressed testes when compared to active testes. In a controlled environment of decreased lighting (shortened photoperiod), temperature and food quality, the testes of sexually active adult males regressed at any time of the year, the resultant testicular morphology and endocrine status being identical to that of wild rats in the non-breeding season. Full testicular regression was achieved only when the photoperiod, temperature and food quality were changed: experiments in which only one or two of these factors were altered failed to produce complete sexual regression.  相似文献   

14.
Pituitary secretion of LH and testicular secretion of testosterone were investigated during the transitional period from the non-breeding to breeding season of mature male fallow deer exhibiting either normal transitional patterns or shortened transitional patterns in response to summer melatonin treatment. Melatonin implants were administered to 4 bucks for a 150-day period starting 130 days after the winter solstice. Four contemporary bucks served as controls. Melatonin treatment advanced rutting activity, testis development and neck muscle hypertrophy by 6-8 weeks. Profiles of plasma LH and testosterone, based on a 30-min sampling frequency over 24 h, were obtained from 3 treated and 3 control bucks on 4 occasions over the period spanning the transition into the breeding season. In control bucks, LH and testosterone pulse frequency were low (0-2 pulses/24 h) in January and increased (5-7 pulses/24 h) in February. By March and April (pre-rut and rut periods respectively) there was a two-fold increase in basal plasma LH concentrations, a decline in LH pulse frequency (0-1 pulse/24 h) and episodic surges in plasma testosterone concentrations. Melatonin treatment resulted in a shift in hormone profiles, with highly pulsatile patterns of LH and testosterone secretion (7 pulses/24 h) occurring earlier in January. The subsequent post-rut profiles of treated bucks were characterized by lower basal plasma LH concentrations, and reduced frequency and amplitude of plasma testosterone surges.  相似文献   

15.
No gene-specific differences were found with respect to LH or testosterone pulsatile secretion (over 12 h), or in 12 hourly mean FSH concentrations in adult Booroola FF and ++ rams. Also, no differences between genotypes in the LH response to an injection of testosterone propionate, the FSH response to an infusion of bovine follicular fluid, or the testosterone response to injections of PMSG were noted. However, during the phase of seasonal testicular development, mean testosterone pulse amplitude (over 12 h) and the FSH response to 25 micrograms GnRH were higher in FF than in ++ rams (P less than 0.05); there were also significant effects of sire (P less than 0.05 in FF genotype only) and litter size (P less than 0.05) on testosterone pulse amplitude and GnRH-stimulated FSH release, respectively. During the breeding season, mean LH, but not FSH, concentrations were higher in FF than in ++ rams, after an injection of 0.5 micrograms GnRH; LH release was not affected by sire or litter size (P greater than 0.05). Long-term studies revealed that the FF rams were born in significantly larger litters, they weighed significantly less than ++ rams (P less than 0.05), and that bodyweight was significantly correlated (P less than 0.05) with litter size. There were no differences in testis size, and testis size was not significantly correlated with bodyweight. There was a strong tendency (P = 0.056) for overall mean FSH concentrations, measured weekly for 9 months, to be highest more often in FF than in ++ rams.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study was designed to see if giving exogenous oestradiol, during the follicular phase of the oestrous cycle of intact ewes, during the breeding season or transition into anoestrus, would alter the occurrence, timing or magnitude of the preovulatory surge of secretion of luteinising hormone (LH) or follicle stimulating hormone (FSH). During the breeding season and the time of transition, separate groups of ewes were infused (intravenously) with either saline (30 ml h−1; n = 6) or oestradiol in saline (n = 6) for 30 h. Infusion started 12 h after removal of progestin-containing intravaginal sponges that had been in place for 12 days. The initial dose of oestradiol was 0.02 μg h−1; this was doubled every 4 h for 20 h, followed by every 5 h up to 30 h, to reach a maximum of 1.5 μg h−1. Following progestin removal during the breeding season, peak serum concentrations of oestradiol in control ewes were 10.31 ± 1.04 pg ml−1, at 49.60 ± 3.40 h after progestin removal. There was no obvious peak during transition, but at a time after progestin removal equivalent to the time of the oestradiol peak in ewes at mid breeding season, oestradiol concentrations were 6.70 ± 1.14 pg ml−1 in ewes in transition (P < 0.05). In oestradiol treated ewes, peak serum oestradiol concentrations (24.8 ± 2.1 pg ml−1) and time to peak (41.00 ± 0.05 h) did not differ between seasons (P > 0.05). During the breeding season, all six control ewes and four of six ewes given oestradiol showed oestrus with LH and FSH surges. The two ewes not showing oestrus did not respond to oestrus synchronisation and had persistently high serum concentrations of progesterone. During transition, three of six control ewes showed oestrus but only two had LH and FSH surges; all oestradiol treated ewes showed oestrus and gonadotrophin surges (P < 0.05). The timing and magnitude of LH and FSH surges did not vary with treatment or season. In blood samples collected every 12 min for 6 h, from 12 h after the start of oestradiol infusion, mean serum concentrations of LH and LH pulse frequency were lower in control ewes during transition than during mid breeding season (P < 0.05). Oestradiol treatment resulted in lower mean serum concentrations of LH in season and lower LH pulse frequency in transition (P < 0.05). We concluded that enhancing the height of the preovulatory peak in serum concentrations of oestradiol during the breeding season did not alter the timing or the magnitude of the preovulatory surge of LH and FSH secretion and that at transition into anoestrus, oestradiol can induce oestrus and the surge release of LH and FSH as effectively as during the breeding season.  相似文献   

17.
The inhibitory effects of follicular fluid on FSH secretion were similar in gonadectomized male and female sheep, and in the anoestrous and breeding seasons. Significant suppression of LH was variable and was observed only at the highest dose of follicular fluid when suppression rarely exceeded 50% of pretreatment values. Basal plasma FSH and LH concentrations were higher in castrated males than in ovariectomized females in both seasons. Plasma FSH concentrations in gonadectomized males and females and LH concentrations in the males were lower in the anoestrous than the breeding season. Therefore, in the absence of the gonads, sex and photoperiod can influence hypothalamic control of basal pituitary gonadotrophin secretion in males and females, whereas the feedback effect of non-steroidal factors in follicular fluid (inhibin) on FSH secretion is not influenced by photoperiod or sex.  相似文献   

18.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

19.
The effect of an aproteic diet (Ap) on the reproductive axis in young male rats was studied. Also the refeeding effect at different times after the aproteic diet was studied. The Ap diet was given during 21 days. In refeeding groups, the control diet was given during 2, 4 and 6 weeks after the aproteic diet. We studied the plasmatic testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels. Also the hypothalamic GnRH concentration and in vitro hypothalamic GnRH secretion in basal and induced condition was studied. The total protein deficit produced significant reduction in body, testis, seminal vesicles and prostate weights. This was accompanied with decreased levels of plasmatic testosterone (P<0.02). In this aproteic group there was a significant reduction in LH (P<0.05) and FSH (P<0.05) plasmatic levels. Refeeding with control diet reversed this situation, producing significant increment in LH (P<0.05) and FSH levels (P<0.01) at the fourth and second weeks, respectively. The basal hypothalamic GnRH secretion did not differ from the control; nevertheless the induced secretion was significantly (P<0.05) greater in the aproteic group. Also the hypothalamic GnRH concentration was increased (P<0.05) in animals fed with the aproteic diet. The minor testis, prostate, and seminal vesicles" weight, and a decreased plasmatic testosterone in rats fed with an aproteic diet, are produced by a decrease in gonadotrophin secretion. This decrease in turn is caused by a reduction in GnRH secretion, since hypothalamic GnRH concentration is increased in rats fed with the aproteic group, and induced secretion is greater in this group. All these alterations produced by an aproteic diet are reversible, since-with contol diet refeeding-the gonadotrophin secretion returned at control levels.  相似文献   

20.
Pituitary and testicular endocrine responses to exogenous gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH), respectively, were assessed for adult rams in an investigation of the regulation of seasonal changes in the patterns of episodic LH and testosterone secretion. Concurrent variations in testis size and in circulating levels of follicle stimulating hormone (FSH) and prolactin (PRL) were also examined. On 10 occasions throughout the year, serum hormone levels were assessed over 6- to 8-h periods during which time rams were left untreated (day 1) or were injected (iv) with single doses of either 10 micrograms synthetic GnRH (day 2) or 30 micrograms NIH-LH-S18 (day 3); blood samples were collected from the jugular vein at 10- to 20-min intervals. Testicular redevelopment during the summer, as indicated by increasing testis diameter measurements, was associated with increases in mean FSH level and was preceded by a springtime rise in mean PRL level; "spontaneously" occurring LH pulses and those produced in response to GnRH treatment were relatively large during this period. Increases in the magnitude of testosterone elevations in response to both endogenously and exogenously produced LH pulses occurred in August. Mean testosterone levels were elevated fourfold in the fall as a consequence of relatively frequent and small LH pulses stimulating a more responsive testis to produce more frequent and larger testosterone elevations; endogenous LH pulses, however, did not appear to stimulate the testes maximally at this time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号