首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Gilthead gill 10(-3) M ouabain-inhibited (Na+ + K+)-ATPase and 10(-2) M ouabain-insensitive Na+-ATPase require the optimal conditions of pH 7.0, 160 mM Na+, 20 mM K+, 5 mM MgATP and pH 4.8-5.2, 75 mM Na+, 2.5 mM Mg2+, 1.0 mM ATP, respectively. 2. The main distinctive features between the two activities are confirmed to be optimal pH, the ouabain-sensitivity and the monovalent cation requirement, Na+ plus another cationic species (K+, Rb+, Cs+, NH4+) in the (Na+ + K+)-ATPase and only one species (Na+, K+, Li+, Rb+, Cs+, NH4+ or choline+) in the Na+-ATPase. 3. The aspecific Na+-ATPase activation by monovalent cations, as well as by nucleotide triphosphates, opposed to the (Na+ + K+)-ATPase specificity for ATP and Na+, relates gilthead gill ATPases to lower organism ATPases and differentiates them from mammalian ones. 4. The discrimination between the two activities by the sensitivity to ethacrynic acid, vanadate, furosemide and Ca2+ only partially agrees with the literature. 5. Present findings are viewed on the basis of the ATPase's presumptive physiological role(s) and mutual relationship.  相似文献   

2.
1. Purified pig kidney ATPase was incubated in 30--160 mM Tris-HCl with various monovalent cations. 130 mM LiCl stimulated a ouabain-sensitive ATP hydrolysis (about 5% of the maximal (Na+ + K) activity), whereas 160 mM Tris-HCl did not stimulate hydrolysis. Similar results were obtained with human red blood cell broken membranes. 2. In the absence of Na+ and with 130 mM LiCl, the ATPase activity as a function of KCl concentration showed an initial slight inhibition (50 micrometer KCl) followed by an activation (maximal at 0.2 mM KCl) and a further inhibition, which was total at mM KCl. In the absence of LiCl, the rate of hydrolysis was not affected by any of the KCl concentrations investigated. 3. The lithium-activation curve for ATPase activity in the absence of both Na+ and K+ had sigmoid characteristics. It also showed a marked dependence on the total LiCl + Tris-HCl concentration, being inhibited at high concentrations. This inhibition was more noticeable at low LiCl concentrations. 4. In the absence of Na+, 130 mM Li+ showed promoted phosphorylation of ATPase from 1 to 3 mM ATP in the presence of Mg2+. In enzyme treated with N-ethylmaleimide, the levels of phosphorylation in Li+-containing solutions, amounted to 40% of those in Na+- and up to 7 times of those in K+-containing solutions. 5. The total (Na+ + K+)-ATPase activity was markedly inhibited at high buffer concentrations (Tris-HCl, Imidazole-HCl and tetramethylammonium-HEPES gave similar results) in cases when either the concentration of Na+ or K+ (or both) was below saturation. On the other hand, the maximal (Na+ + K+)-ATPase activity was not affected (or very slightly) by the buffer concentration. 6. Under standard conditions (Tris-HCl + NaCl = 160 mM) the Na+-activation curve of Na+-ATPase had a steep rise between 0 and 2.5 mM, a fall between 2.5 and 20 mM and a further increase between 20 and 130 mM. With 30 mM Tris-HCl, the curve rose more steeply, inhibition was noticeable at 2.5 mM Na+ and was completed at 5 mM Na+. With Tris-HCl + NaCl = 280 mM, the amount of activation decreased and inhibition at intermediate Na+ concentrations was not detected.  相似文献   

3.
In the Albers-Post model, occlusion of K(+) in the E(2) conformer of the enzyme (E) is an obligatory step of Na(+)/K(+)-ATPase reaction. If this were so the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) should be equal to the rate constant for deocclusion. We tested this prediction in a partially purified Na(+)/K(+)-ATPase from pig kidney by means of rapid filtration to measure the occlusion using the K(+) congener Rb(+). Assuming that always two Rb(+) are occluded per enzyme, the steady-state levels of occluded forms and the kinetics of deocclusion were adequately described by the Albers-Post model over a very wide range of [ATP] and [Rb(+)]. The same happened with the kinetics of ATP hydrolysis. However, the value of the parameters that gave best fit differed from those for occlusion in such a way that the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) became much larger than the rate constant for deocclusion when [Rb(+)] <10 mM. This points to the presence of an extra ATP hydrolysis that is not Na(+)-ATPase activity and that does not involve occlusion. A possible way of explaining this is to posit that the binding of a single Rb(+) increases ATP hydrolysis without occlusion.  相似文献   

4.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

5.
Acetyl phosphate, as a substrate of (Na+ + K+)-ATPase, was further characterized by comparing its effects with those of ATP on some total and partial reactions carried out by the enzyme. In the absence of Mg2+ acetyl phosphate could not induce disocclusion (release) of Rb+ from E2(Rb); nor did it affect the acceleration of Rb+ release by non-limiting concentrations of ADP. In K+-free solutions and at pH 7.4 sodium ions were essential for ATP hydrolysis by (Na+ + K+)-ATPase; when acetyl phosphate was the substrate a hydrolysis (inhibited by ouabain) was observed in the presence and absence of Na+. In liposomes with (Na+ + K+)-ATPase incorporated and exposed to extravesicular (intracellular) Na+, acetyl phosphate could sustain a ouabain-sensitive Rb+ efflux; the levels of that flux were similar to those obtained with micromolar concentrations of ATP. When the liposomes were incubated in the absence of extravesicular Na+ a ouabain-sensitive Rb+ efflux could not be detected with either substrate. Native (Na+ + K+)-ATPase was phosphorylated at 0 degrees C in the presence of NaCl (50 mM for ATP and 10 mM for acetyl phosphate); after phosphorylation had been stopped by simultaneous addition of excess trans-1,2-diaminocyclohexane-N,N,N',N' tetraacetic acid and 1 M NaCl net synthesis of ATP by addition of ADP was obtained with both phosphoenzymes. The present results show that acetyl phosphate can fuel the overall cycle of cation translocation by (Na+ + K+)-ATPase acting only at the catalytic substrate site; this takes place via the formation of phosphorylated intermediates which can lead to ATP synthesis in a way which is indistinguishable from that obtained with ATP.  相似文献   

6.
The dephosphorylation kinetics of acid-stable phosphointermediates of (Na+ + K+)-ATPase from ox brain, ox kidney and pig kidney was studied at 0 degree C. Experiments performed on brain enzyme phosphorylated at 0 degree C in the presence of 20-600 mM Na+, 1 mM Mg2+ and 25 microM [gamma-32P]ATP show that irrespectively of the EP-pool composition, which is determined by Na+ concentration, all phosphoenzyme is either ADP- or K+-sensitive. After phosphorylation of kidney enzymes at 0 degree C with 1 mM Mg2+, 25 microM [gamma-32P]ATP and 150-1000 mM Na+ the amounts of ADP- and K+-sensitive phosphoenzymes were determined by addition of 1 mM ATP + 2.5 mM ADP or 1 mM ATP + 20 mM K+. Similarly to the previously reported results on brain enzyme, both types of dephosphorylation curves have a fast and a slow phase, so that also for kidney enzymes a slow decay of a part of the phosphoenzyme, up to 80% at 1000 mM Na+, after addition of 1 mM ATP + 20 mM K+ is observed. The results obtained with the kidney enzymes seem therefore to reinforce previous doubts about the role played by E1 approximately P(Na3) as intermediate of (Na+ + K+)-ATPase activity. Furthermore, for both kidney enzymes the sum of ADP- and K+-sensitive phosphoenzymes is greater than E tot. In experiments on brain enzyme an estimate of dissociation rate constant for the enzyme-ATP complex, k-1, is obtained. k-1 varies between 1 and 4 s-1 and seems to depend on the ligands present during formation of the complex. The highest values are found for enzyme-ATP complex formed in the presence of Na+ or Tris+. The results confirm the validity of the three-pool model in describing dephosphorylation kinetics of phosphointermediates of Na+-ATPase activity.  相似文献   

7.
Purified (Na+ + K+)-ATPase from pig kidney was attached to black lipid membranes and ATP-induced electric currents were measured as described previously by Fendler et al. ((1985) EMBO J. 4, 3079-3085). An ATP concentration jump was produced by an ultraviolet-light flash converting non-hydrolysable caged ATP to ATP. In the presence of Na+ and Mg2+ this resulted in a transient current signal. The pump current was not only ATP dependent, but also was influenced by the ATP/caged ATP ratio. It was concluded that caged ATP binds to the enzyme (and hence inhibits the signal) with a Ki of approx. 30 microM, which was confirmed by enzymatic activity studies. An ATP affinity of approx. 2 microM was determined. The addition of the protonophore 1799 and the Me+/H+ exchanger monensin made the bilayer conductive leading to a stationary pump current. The stationary current was strongly increased by the addition of K+ with a K0.5 of 700 microM. Even in the absence of K+ a stationary current could be measured, which showed two Na+-affinities: a high-affinity (K0.5 less than or equal to 1 mM) and a low-affinity (K0.5 greater than or equal to 0.2 M). In order to explain the sustained electrogenic Na+ transport during the Na+-ATPase activity, it is proposed, that Na+ can replace K+ in dephosphorylating the enzyme, but binds about 1000-times weaker than K+. The ATP requirement of the Na+-ATPase was the same (K0.5 = 2 microM) with regard to the peak currents and the stationary currents. However, for the (Na+ + K+)-ATPase the stationary currents required more ATP. The results are discussed on the basis of the Albers-Post scheme.  相似文献   

8.
The controlling effect of ATP, K+ and Na+ on the rate of (Na+ + K+)-ATPase inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1) is used for the mathematical modelling of the interaction of the effectors with the enzyme under equilibrium conditions. 1. Of a series of conceivable interaction models, designed without conceptual restrictions to describe the effector control of inactivation kinetics, only one fits the experimental data described in a preceding paper. 2. The model is characterized by the coexistence of two binding sites for ATP and the coexistence of two separate binding sites for K+ and Na+ on the enzyme-ATP complex. On the basis of this model, the effector parameters fitting the experimental data most closely are estimated by means of nonlinear least-squares fits. 3. The apparent dissociation constants for ATP fo the enzyme-ATP complex or of the enzyme-(ATP)2 complex are computed to lie near 0.0024 mM and 0.34 mM, respectively, irrespective of whether K+ and Na+ were absent or K+ and K+ plus Na+, respectively, were present in the experiments. 4. The origin of the high and the low affinity site for binding of ATP to the (Na+ + K+)-ATPase molecule is traced back to the coexistence of two catalytic centres which, although primarily equivalent as to the reactivity of their thiol groups with NBD-C1, are induced into anticooperative communication by ATP binding and thus show an induced geometric asymmetry. 5. On the basis of the interaction model outlined under item 2 the apparent dissociation constant for K+ or Na+ in the (K+ + Na+)-liganded enzyme-ATP complex are computed to be 1.7 mM and 3.5 mM, respectively. 6. The conclusions concerning the coexistence of two primarily equivalent but anticooperatively interacting catalytic centres and the coexistence of two separate ionophoric centres for Na+ and K+ correspond to the appropriate basic postulates of the flip-flop concept of (Na+ + K+)-ATPase mechanism.  相似文献   

9.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

10.
Monoclonal antibodies against horse kidney outer medulla (Na+ + K+)-ATPase were prepared. One of these antibodies (M45-80), was identified as an IgM, recognized the alpha subunit of the enzyme. M45-80 had the following effects on horse kidney (Na+ + K+)-ATPase: (1) it inhibited the enzyme activity by 50% in 140 mM Na+ and by 80% in 8.3 mM Na+; (2) it increased the Na+ concentration necessary for half-maximal activation (K0.5 for Na+) from 12.0 to 57.6 mM, but did not affect K0.5 for K+; (3) it slightly increased the K+-dependent p-nitrophenylphosphatase (K-pNPPase) activity; (4) it inhibited phosphorylation of the enzyme with ATP by 30%, but did not affect the step of dephosphorylation; and (5) it enhanced the ouabain binding rate. These data are compatible with a stabilizing effect on the E2 form of (Na+ + K+)-ATPase. M45-80 was concluded to bind to the extracellular surface of the plasmamembrane, based on the following evidence: (1) M45-80 inhibited by 50% the ouabain-sensitive 86Rb+ uptake in human intact erythrocytes from outside of the cells; (2) the inhibition of (Na+ + K+)-ATPase activity in right-side-out vesicles of human erythrocytes was greater than that in inside-out vesicles; and (3) the fluorescence intensity due to FITC-labeled rabbit anti-mouse IgM that reacted with M45-80 bound to the right-side-out vesicles was much greater than that in the case of the inside-out vesicles.  相似文献   

11.
Radiation inactivation of partially purified (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from pig kidney outer medulla shows that the target size for Rb+ occlusion by the enzyme (in the absence of phosphorylation) is much smaller than the target size for p-nitrophenyl phosphatase activity, which is itself smaller than the reported target size for (Na+ + K+)-ATPase activity.  相似文献   

12.
The ATP hydrolysis dependent Na+-Na+ exchange of reconstituted shark (Na+ + K+)-ATPase is electrogenic with a transport stoichiometry as for the Na+-K+ exchange, suggesting that translocation of extracellular Na+ is taking place via the same route as extracellular K+. The preparation thus offers an opportunity to compare the sided action of Na+ and K+ on the affinity for ATP in a reaction in which the intermediary steps in the overall reaction seems to be the same without and with K+. With Na+ but no K+ on the two sides of the enzyme, the ATP-activation curve is hyperbolic and the affinity for ATP is high. Extracellular K+ in concentrations of 50 microM (the lowest tested) and up gives biphasic ATP activation curves, with both a high- and a low-affinity component for ATP. Cytoplasmic K+ also gives biphasic ATP-activation curves, however, only when the K+ concentration is 50 mM or higher (Na+ + K+ = 130 mM). The different ATP-activation curves are explained from the Albers-Post scheme, in which there is an ATP-dependent and an ATP-independent deocclusion of E2(Na2+) and E2(K2+), respectively, and in which the dephosphorylation of E2-P is rate limiting in the presence of Na+ (but no K+) extracellular, whereas in the presence of extracellular K+ it is the deocclusion of E2(K2+) which is rate limiting.  相似文献   

13.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

14.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

15.
This paper demonstrates and characterizes inactivation by N,N'-dicyclohexylcarbodiimide (DCCD) of Rb+ and Na+ occlusion in pig kidney (Na+,K+)-ATPase. Rb+ and Na+ occlusion dependent on oligomycin are measured with a manual assay. Parallel measurement of phosphorylation (by Pi plus ouabain) and Na+ or Rb+ occlusion lead to stoichiometries of 3 Na+ or 2 Rb+ per pump molecule. Inactivation of cation occlusion by DCCD shows the following features: (a) Rb+ and Na+ occlusion are inactivated with identical rates and (b) DCCD concentration dependence shows first-order kinetics and also proportionality to the ratio of DCCD to protein, (c) Rb+ and Na+ occlusion are equally protected from DCCD, by Rb+ ions with high affinity (or Na+ ions with lower affinity), (d) inactivation is only slightly pH-dependent between 6 and 8.5 but (e) is significantly accelerated by several hydrophobic amines while a water-soluble nucleophile, glycine ethyl ester has no effect, and (f) inactivation is exactly correlated with inactivation of (Na+,K+)-ATPase activity of ATP-dependent Na+/K+ exchange in reconstituted vesicles and with the magnitude of E1Na+----E2(Rb+) conformational transitions measured with fluorescence probes. The simplest hypothesis to explain the results is that DCCD modifies one (or a small number of) critical carboxyl residues in a non-aqueous cation binding domain and so blocks occlusion of 2 Rb+ or 3 Na+ ions. The results suggest further that Na+ and K+(Rb+) bind to the same sites and are transported sequentially on the same trans-membrane segments. A second effect of the DCCD treatment is a 4-8-fold shift of the conformational equilibrium E2(Rb+)----E1Rb+ toward E1Rb+. This is detected by (a) reduction in apparent Rb+ affinity for Rb+ occlusion or Rb+/Rb+ exchange in vesicles and (b) direct demonstration of an increased rate of E2(K+)----E1Na+ and decreased rate of E1Na+----E2(K+). This effect is not protected against by Rb+ ions and probably reflects modification of a second group of residues. Modification of (Na+,K+)-ATPase by carbodiimides is complex. Depending on the nature of the carbodiimide (water- or lipid-soluble), ratio of carbodiimide to protein, and perhaps source of the enzyme, inactivation might result either from modification of critical carboxyls, as suggested by this work, or from internal cross-linking as proposed by Pedemonte, C. H. and Kaplan, J. H. ((1986) J. Biol. Chem. 261, 3632-3639).  相似文献   

16.
A potent inhibitor of (Na+ + K+)-ATPase activity was purified from Sigma equine muscle ATP by cation- and anion-exchange chromatography. The isolated inhibitor was identified by atomic absorption spectroscopy and proton resonance spectroscopy to be an inorganic vanadate. The isolated vanadate and a solution of V2O5 inhibit sarcolemma (Na+ + K+)-ATPase with an I50 of 1 micrometer in the presence of 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), 145 mM NaCl, 6mM MgCl2, 15 mM KCl and 2 mM synthetic ATP. The potency of the isolated vanadate is increased by free Mg2+. The inhibition is half maximally reversed by 250 micrometer epinephrine. Equine muscle ATP was also found to contain a second (Na+ + K+)-ATPase inhibitor which depends on the sulfhydryl-reducing agent dithioerythritol for inhibition. This unknown inhibitor does not depend on free Mg2+ and is half maximally reversed by 2 micrometer epinephrine. Prolonged storage or freeze-thawing of enzyme preparations decreases the susceptibility of the (Na+ + K+)-ATPase to this inhibitor. The adrenergic blocking agents, propranolol and phentolamine, do not block the catecholamine reactivation. The inhibitors in equine muscle ATP also inhibit highly purified (Na+ + K+)-ATPase from shark rectal gland and eel electroplax. The inhibitors in equine muscle ATP have no effect on the other sarcolemmal ATPases, Mg2+-ATPase, Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase.  相似文献   

17.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

18.
We report a study on the effect of the fluorescent probe eosin on some of the reactions involved in the conformational transitions that lead to the occlusion of the K(+)-congener Rb(+) in the Na(+)/K(+)-ATPase. Eosin decreases the equilibrium levels of occluded Rb(+), this effect being fully attributable to a decrease in the apparent affinity of the enzyme for Rb(+) since the capacity for occlusion remains independent of eosin concentration. The results can be quantitatively described by a model that assumes that two molecules of eosin are able to bind to the Na(+)/K(+)-ATPase, both to the Rb(+)-free and to the Rb(+)-occluded enzyme regardless of the degree of cation occlusion. Concerning the effect on the affinity for Rb(+) occlusion, transient state experiments show that eosin reduces the initial velocity of occlusion, and that, like ATP, it increases the velocity of deocclusion of Rb(+). Interactions between eosin and ATP on Rb(+)-release experiments seem to indicate that eosin binds to the low-affinity site of ATP from which it exerts effects that are similar to those of the nucleotide.  相似文献   

19.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

20.
ATP and GTP have been compared as substrates for (Na+ + K+)-ATPase in Na+-activated hydrolysis, Na+-activated phosphorylation, and the E2K----E1K transition. Without added K+ the optimal Na+-activated hydrolysis rates in imidazole-HCl (pH 7.2) are equal, but are reached at different Na+ concentrations: 80 mM Na+ for GTP, 300 mM Na+ for ATP. The affinities of the substrates for the enzyme are widely different: Km for ATP 0.6 microM, for GTP 147 microM. The Mg-complexed nucleotides antagonize activation as well as inhibition by Na+, depending on the affinity and concentration of the substrate. The optimal 3-s phosphorylation levels in imidazole-HCl (pH 7.0) are equally high for the two substrates (3.6 nmol/mg protein). The Km value for ATP is 0.1-0.2 microM and for GTP it ranges from 50 to 170 microM, depending on the Na+ concentration. The affinity of Na+ for the enzyme in phosphorylation is lower with the lower affinity substrate: Km (Na+) is 1.1 mM with ATP and 3.6 mM with GTP. The GTP-phosphorylated intermediate exists, like the ATP-phosphorylated intermediate, in the E2P conformation. Addition of K+ increases the optimal hydrolytic activity 30-fold for ATP (at 100 mM Na+ + 10 mM K+) and 2-fold for GTP (at 100 mM Na+ + 0.16 mM K+). K+ greatly increases the Km values for both substrates (to 430 microM for ATP and 320 microM for GTP). Above 0.16 mM K+ inhibits GTP hydrolysis. GTP does not reverse the quenching effect of K+ on the fluorescence of the 5-iodoacetamidofluorescein-labeled enzyme. ATP fully reverses this effect, which represents the transition from E1K to E2K. Hence GTP is unable to drive the E2K----E1K transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号