首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Summary The ability of 45 fungal strains to degrade wheat straw and beech wood was studied. Degradation patterns were defined in terms of chemical evolution of substrates and changes in lignin and polysaccharides. Trametes versicolor produced an important degradation of lignin and increased substrate digestibility, but it caused high weight losses and gave rise to similar decay patterns on both substrates. A preferential degradation of lignin was produced during straw transformation by Pleurotus eryngii. The increase of soluble lignin and decreases of lignin content and H/C ratio defined the degradation tendency after principal component analysis. The cation exchange capacity and water and alkali solubility presented the highest loading factors for the characterization of fungal transformation of beech wood. Offprint requests to: A. T. Martínez  相似文献   

2.
Trametes versicolor and Agaricus augustus, with a maximum tolerable concentration (MTC) of 80 μg ml−1 tribromophenol (TBP), were selected to evaluate TBP biodegradation capacity. These fungi were capable of decreased TBP concentrations and A. augustus was also capable of biotransforming TBP to tribromoanisole (TBA). Peroxidase and laccase activities were observed in the T. versicolor supernatant but not in that of A. augustus. These tolerance levels could be due to either lignolytic enzymes that degrade TBP or the ability of the fungi to biotransform TBP to tribromoanisole, respectively. The sustained ability of T. versicolor to degrade TBP (total of 40 μg ml−1) in the presence of an additional carbon source suggests that it may have potential applications in the degradation of forestry industry waste.  相似文献   

3.
White rot fungi are good lignin degraders and have the potential to be used in industry. In the present work, Phellinus sp., Daedalea sp., Trametes versicolor and Pycnoporus coccineus were selected due to their relatively high ligninolytic enzyme activity, and grown on Acacia mangium wood chips under solid state fermentation. Results obtained showed that manganese peroxidase produced is far more compared to lignin peroxidase, suggesting that MnP might be the predominating enzymes causing lignin degradation in Acacia mangium wood chips. Cellulase enzyme assays showed that no significant cellulase activity was detected in the enzyme preparation of T. versicolor and Phellinus sp. This low cellulolytic activity further suggests that these two white rot strains are of more interest in lignin degradation. The results on lignin losses showed 20–30% of lignin breakdown at 60 days of biodegradation. The highest lignin loss was found in Acacia mangium biotreated with T. versicolor after 60 days and recorded 26.9%, corresponding to the percentage of their wood weight loss recorded followed by P. coccineus. In general, lignin degradation was only significant from 20 days onwards. The overall percentage of lignin weight loss was within the range of 1.02–26.90% over the biodegradation periods. Microscopic observations conducted using scanning electron microscope showed that T. versicolor, P. coccineus, Daedalea sp. and Phellinus sp. had caused lignin degradation in Acacia mangium wood chips.  相似文献   

4.
The cyanide degradation abilities of three white rot fungi, Trametes versicolor ATCC 200801, Phanerochaete chrysosporium ME 496 and Pleurotus sajor-caju, were examined. T. versicolor was the most effective with 0.35 g dry cell/100 ml degrading 2 mm KCN (130 mg/l) over 42 h, at 30°C, pH 10.5 with stirring at 150 rpm.  相似文献   

5.
Summary Twelve white-rot fungi were grown in solid state culture on sugarcane chips previously fermented by yeast employing the EX-FERM process. The lignocellulosic sugarcane residue had 12.5% permanganate lignin and 81.3% holocellulose. After 5 to 6 weeks at 20° C, all fungi produced a solid residue which had a lower in vitro dry matter enzymatic digestibility than the original bagasse, with the exception of Coriolus versicolor which showed a slight increase of 0.6 units. Four fungi produced a residue with higher soluble solids than the original sample. Lignin losses were rather similar for all fungi tested, an average value of 38.64% of the original value was obtained. About the same amount of hemicellulose was degreaded, 32.22%. Most fungi showed a preference for hemicellulose hydrolysis over cellulose degradation. The two fungi that showed greater cellulolytic activity were Sporotrichum pulverulentum and Dichomitus squalens. No appreciable dry matter losses were detected for Agrocybe aergerita and Flammulina velutipes.  相似文献   

6.
Summary The kinetics of straw solid-state fermentation (SSF) with Trametes versicolor and Pleurotus ostreatus was investigated to characterize the delignification processes by these white-rot fungi. Two successive phases could be defined during straw transformation, characterized by changes in respiratory activity, changes in lignin and polysaccharide content and composition, increase in in-vitro digestibility, and enzymatic activities produced by the fungi. Lignin composition was analysed after CuO alkaline degradation, and decreases in syringyl/guaiacyl and syringyl/p-hydroxyphenyl ratios and cinnamic acid content were observed during the fungal treatment. An increase in the phenolic acid yield, revealing fungal degradation of side-chains in lignin, was produced by P. ostreatus. The highest xylanase level was produced by P. ostreatus, and exocellulase activity was nearly absent from straw treated with this fungus. Lactase activity was found in straw treated with both fungi, but lignin peroxidase was only detected during the initial phase of straw transformation with T. versicolor. High levels of H2O2-producing aryl-alcohol oxidase occurred throughout the straw SSF with P. ostreatus. Offprint requests to: A. T. Martínez  相似文献   

7.
Ligninolytic enzyme production by the white-rot fungi Phanerochaete chrysosporium and Trametes versicolor precultivated with different insoluble lignocellulosic materials (grape seeds, barley bran and wood shavings) was investigated. Cultures of Phanerochaete chrysosporium precultivated with grape seeds and barley bran showed maximum lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) activities (1000 and 1232 U/l, respectively). Trametes versicolor precultivated with the same lignocellulosic residues showed the maximum laccase activity (around 250 U/l). For both fungi, the ligninolytic activities were about two-fold higher than those attained in the control cultures. In vitro decolorization of the polymeric dye Poly R-478 by the extracellular liquid obtained in the above-mentioned cultures was monitored in order to determine the respective capabilities of laccase, LiP and MnP. It is noteworthy that the degrading capability of LiP when P. chrysosporium was precultivated with barley bran gave a percentage of Poly R-478 decolorization of about 80% in 100 s, whereas control cultures showed a lower percentage, around 20%, after 2 min of the decolorization reaction.  相似文献   

8.
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate μmax 0.33 h−1, metabolic coefficient k = 4.4, yield coefficient Y x/s  = 0.23 and rate of degradation Q = 0.506 h−1. The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5′end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.  相似文献   

9.
The use of Trametes versicolor as a biological pretreatment for canola straw was explored in the context of biofuel production. Specifically, the effects on the straw of a wild-type strain (52 J) and a cellobiose dehydrogenase (CDH)-deficient strain (m4D) were investigated. The xylose and glucose contents of the straw treated with 52 J were significantly reduced, while only the xylose content was reduced with m4D treatment. Lignin extractability was greatly improved with fungal treatments compared to untreated straw. Saccharification of the residue of the m4D-treated straw led to a significant increase in proportional glucose yield, which was partially attributed to the lack of cellulose catabolism by m4D. Overall, the results of this study indicate that CDH facilitates cellulose access by T. versicolor. Furthermore, treatment of lignocellulosic material with m4D offers improvements in lignin extractability and saccharification efficacy compared to untreated biomass without loss of substrate due to fungal catabolism.  相似文献   

10.
We assessed 62 fungal strains in 31 species of wood decay fungi in the ability to decompose wood blocks of Japanese beech (Fagus crenata) under a pure culture condition. Fungi were collected in a cool temperate beech forest in Japan and isolated from the inside of beech logs and from sporocarps fruiting on logs and snags of beech that were different in diameter and decay class. Fungi in Holobasidiomycetidae showed marked decomposition of lignin and carbohydrate. These fungi were divided into three groups according to the pattern of lignin and carbohydrate utilization. Phanerochaete filamentosa decomposed lignin selectively. Lampteromyces japonicus, Steccherinum rhois, Trichaptum biforme, Stereum ostrea, Mycena haematopoda, Antrodiella albocinnamomea, Daedalea dickinsii, Daedaleopsis tricolor, Ganoderma tsunodae, and Trametes versicolor decomposed lignin and carbohydrates simultaneously. Psathyrella candolleana, Lenzites betulinus, and Trametes hirsuta decomposed carbohydrates selectively. Species in the Phragmobasidiomycetidae and in the Ascomycota caused low mass loss of wood.  相似文献   

11.
Summary A heat stable, low molecular weight (<1000) extracellular product inTrametes versicolor (=Coriolus versicolor=Polyporous versicolor) cultures was demonstrated to be a principal factor in the solubilization of leonardite and other low-rank coals. The solubilization of leonardite byT. versicolor cell-free cultures and active fractions was inhibited by Fe3+ and was mimicked by the siderophore desferal mesylate and the iron chelating agents EDTA and 8-hydroxyquinoline. Leonardite solubilization by these later compounds was also inhibited by Fe3+. The ferrated and unferrated form of the partially purified active component fromT. versicolor cultures demonstrated absorption spectra that were similar to the ferrated and unferrated form of desferal mesylate.  相似文献   

12.
White rot fungi Fomes lividus and Trametes versicolor, isolated from the Western Ghats region of Tamil Nadu, India, were used to treat pulp and paper industry effluents on a laboratory scale and in a pilot scale. On the laboratory scale a maximum decolourization of 63.9% was achieved by T. versicolor on the fourth day. Inorganic chloride at a concentration of 765 mg/l, which corresponded to 227% of that in the untreated effluent, was liberated by F. lividus on the 10th day. The chemical oxygen demand (COD) was also reduced to 1984 mg/l (59.3%) by each of the two fungi. On the pilot scale, a maximum decolourization of 68% was obtained with the 6-day incubation by T. versicolor, inorganic chloride 475 mg/l (103%) was liberated on the seventh day by T. versicolor, and the COD was reduced to 1984 mg/l corresponding to 59.32% by F. lividus. These results suggested that F. lividus seems to be another candidate efficient for dechlorination of wastewater.  相似文献   

13.
The ability of three fungal strains (Pleurotus sajor-caju, Phanerochaete chrysosporium, Trametes versicolor) to decrease the lignin content and to enhance in vitro rumen digestibility of lignified spruce sawdust was assessed. In monoculture solid substrate fermentation (SSF) studies, a considerable length of time (6 weeks) elapsed before 4 to 14% lignin was degraded. In contrast, paired or multiple cultures of these fungi caused an 8 to 16% loss of native lignin within three weeks of incubation. There were also synergistic effects on total polysaccharide/hemicellulose degraded by mixed cultures. A similar observation was made for in vitro digestibility of fungal fermented samples: Total solubles (carbohydrate products) which accumulated in cultures were significantly higher in mixed cultures than in respective monocultures. In contrast, mixtures of cell free enzyme extracts of these fungi did not cause any marked reduction in lignin or cellulose content. Supplementation of wood sawdust with carbohydrate adjuncts prior to fungal treatment also led to substantial reduction in lignin content and increased substrate digestibility.F.O. Asiegbu is with the Department of Forest Mycology & Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, S-750 07 Uppsala, Sweden; A. Paterson and J.E. Smith are with the Department of Bioscience and Biotechnology, University of Strathclyde, Glasgow, G1 1XW, UK.  相似文献   

14.
Mixtures of equal amounts of the erythro and threo forms of the phenolic arylglycerol β-aryl ether 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol were oxidized (i) with laccases from Trametes versicolor, Agaricus bisporus, Myceliophthora thermophila and Rhus vernicifera, (ii) with laccase-mediator systems consisting of T. versicolor laccase and ABTS or HBT, and (iii) with various model oxidants including cerium(IV) ammonium nitrate (CAN), lignin peroxidase, Fenton’s reagent, and lead(IV) tetraacetate (LTA). All the laccases exhibited a similar preferential degradation of the threo form. The mediator ABTS counteracted the threo preference of laccase, but the mediator HBT did not affect it. The outer-sphere model oxidants CAN and lignin peroxidase showed a preferential degradation of the threo form. LTA and Fenton’s reagent did not exhibit any stereo-preference. The results suggest that laccases of different origin, primary structure, and redox potential behave as typical outer-sphere oxidants in their interaction with the diastereomers of the arylglycerol β-aryl ether.  相似文献   

15.
The white-rot basidiomycete Coriolus versicolor secretes several enzymes that participate in the degradation of lignin and various persistent organic pollutants. In this study, we attempted to establish a genetic transformation system with a homogenous promoter sequence for driving the gene for antibiotic resistance. We succeeded in cloning the promoter sequence of the gene for glyceraldehyde-3-phosphate dehydrogenase (gpd), which is expressed at high levels in C. versicolor. The expression vector pT7GPTHPT was constructed, which included a gene for resistance to hygromycin B under control of the gpd promoter. The successful selection of transformants on medium that contained hygromycin B indicated that the system should be useful not only for the genetic transformation of C. versicolor, but also for the overproduction of useful fungal enzymes such as laccase and peroxidase.  相似文献   

16.
A total of 54 strains of white rot fungi belonging to 12 closely related species of genera Trametes,Coriolopsis, Cerrena and Lenzites were tested for tyrosinase activity. In the majority of the strains preliminary spot test using p-cresol gave mostly negative results, the activity being detected only in four strains of three different Trametes species (Trametes cervina, T. hirsuta, T. versicolor). The tyrosinase activity of these strains (one strain of T. cervina, T. hirsuta H3, T. hirsuta H7 and T. versicolor V14) was then confirmed spectrophotometrically. Tyrosinase activity has not yet been described in any Trametes species.  相似文献   

17.
The ultrastructural patterns characterizing wheat straw degradation by the ligninolytic fungi Phanerochaete chrysosporium and Trametes versicolor were studied. During fungal attack, the less lignified tissues were degraded first, whereas the xylematic and sclerenchymatic fibers underwent a delayed attack. In straw samples degraded by T. versicolor, partial delignification, defibrillation and swelling of cell walls, often causing separation between primary and secondary walls, were observed. By contrast, the formation of erosions and fissures, with minor lignin removal, characterized the attack to the cell wall by P. chrysosporium. At an advanced stage of decay, KMnO4 staining demonstrated abundant electron-dense material around hyphae and in the proximity of the cell-wall surface. In the case of P. chrysosporium, spherical black bodies were found in the erosions and fissures produced during fungal attack.  相似文献   

18.
The white rot fungus Trametes (Coriolus) versicolor can delignify and brighten unbleached hardwood kraft pulp within a few days, but softwood kraft pulps require longer treatment. To determine the contributions of higher residual lignin contents (kappa numbers) and structural differences in lignins to the recalcitrance of softwood kraft pulps to biobleaching, we tested softwood and hardwood pulps cooked to the same kappa numbers, 26 and 12. A low-lignin-content (overcooked) softwood pulp resisted delignification by T. versicolor, but a high-lignin-content (lightly cooked) hardwood pulp was delignified at the same rate as a normal softwood pulp. Thus, the longer time taken by T. versicolor to brighten softwood kraft pulp than hardwood pulp results from the higher residual lignin content of the softwood pulp; possible differences in the structures of the residual lignins are important only when the lignin becomes highly condensed. Under the conditions used in this study, when an improved fungal inoculum was used, six different softwood pulps were all substantially brightened by T. versicolor. Softwood pulps whose lignin contents were decreased by extended modified continuous cooking or oxygen delignification to kappa numbers as low as 15 were delignified by T. versicolor at the same rate as normal softwood pulp. More intensive O2 delignification, like overcooking, decreased the susceptibility of the residual lignin in the pulps to degradation by T. versicolor.  相似文献   

19.
Antimicrobial compounds enokipodins A, B, C, and D were originally isolated from the culture filtrates of Flammulina velutipes mycelial culture. Analysis of antibacterial activity by the paper disk method and quantification of enokipodins A–D by high performance liquid chromatography (HPLC) showed that F. velutipes mycelia produced enokipodins A–D in their late growing phase. Great genetic variability in production of these compounds was observed among ten strains of F. velutipes in analyses of antimicrobial activity by the hole-plate diffusion method and quantification by HPLC. Enokipodins A–D demonstrated antimicrobial activity mainly against the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus. Evaluation of minimum inhibitory doses (MIDs) showed that MIDs of enokipodins A and C for B. subtilis were as low as that of the penicillin G antibiotic.  相似文献   

20.
Jia C  Kang R  Zhang Y  Zhang Y  Cong W 《Biodegradation》2007,18(5):551-557
Degradation and decolorization of monosodium glutamate wastewater (MSGW) with Coriolus versicolor were firstly carried out. The effects of various operation parameters namely wastewater concentrations, pH, culture time and incidence of sterilization on maximum percentage of degradation and decolorization of wastewater were investigated. Studies of mycelium and enzyme for C. versicolor degradation and decolorization were estimated in this study. Ten percentage of wastewater concentration and pH = 5.0 were found to be the most suitable ones among the other experiments. The highest degradation and decolorization efficiency of wastewater was obtained at the fifth day of cultivation, which was displayed with more than 70% chemical oxygen demand removal, 83% total sugar removal and 55% color removal, respectively. Sterile operation had no remarkable effect on the degradation and decolorization efficiency for C. versicolor. Mycelium and the extra cellular fungal enzyme were both necessary for the degradation and decolorization of MSGW. C. versicolor possesses great potential and economic advantages in MSGW treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号