首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report herein the complete coding sequence of a Taenia solium cytosolic malate dehydrogenase (TscMDH). The cDNA fragment, identified from the T. solium genome project database, encodes a protein of 332 amino acid residues with an estimated molecular weight of 36517 Da. For recombinant expression, the full length coding sequence was cloned into pET23a. After successful expression and enzyme purification, isoelectrofocusing gel electrophoresis allowed to confirm the calculated pI value at 8.1, as deduced from the amino acid sequence. The recombinant protein (r-TscMDH) showed MDH activity of 409 U/mg in the reduction of oxaloacetate, with neither lactate dehydrogenase activity nor NADPH selectivity. Optimum pH for enzyme activity was 7.6 for oxaloacetate reduction and 9.6 for malate oxidation. Kcat values for oxaloacetate, malate, NAD, and NADH were 665, 47, 385, and 962 s−1, respectively. Additionally, a partial characterization of TsMDH gene structure after analysis of a 1.56 Kb genomic contig assembly is also reported.  相似文献   

2.
Summary Plasma membrane vesicles isolated from onion roots showed oxaloacetate reductase activity as well as other oxidoreductase activities. Purification and further sequencing showed that the protein responsible for the activity is a 40 kDa protein which corresponds to the cytosolic soluble malate dehydrogenase. However, the activity remained bound to the membrane after repeated freezing and thawing cycles and further washing, excluding a cytosolic contamination as the source of the activity. Furthermore, a second 28 kDa protein has been copurified together with the 40 kDa protein. The plasmalemma oxaloacetate reductase activity shows both donor and acceptor sites located towards the cytoplasmic side of the plasma membrane. This enzyme catalyzed the oxidation of NADH by oxaloacetate and the reduction of NAD+ by malate in the presence of an oxaloacetate-withdrawing system. We conclude that a significant amount of the cytosolic malate dehydrogenase can be specifically attached to the cytosolic face of the plasmalemma. A possible role in a putative malate shuttle associated to the plasma membrane is discussed.Abbreviations AFR ascorbate free radical - DQ duroquinone - OA oxaloacetate - DPIP dichlorophenolindophenol - MDH malate dehydrogenase - PHMB p-hydroxymercuribenzoate  相似文献   

3.
Malic enzyme of the phototrophic bacterium Chromatium vinosum strain D that lacks malate dehydrogenase was partially purified yielding a specific activity of 55 units/mg protein. The constitutive enzyme with a molecular weight of 110,000 and a pH optimum of 8.0 was absolutely dependent on the presence of a monovalent cation (NH 4 + , K+, Cs+, or Rb+) as well as a divalent cation (Mn2+, or Mg2+). The enzyme was inhibited by oxaloacetate, glyoxylate, and NADPH. The K 0.5 value for L-malate and the inhibition constants for oxaloacetate and glyoxylate are dependent on the concentration of the monovalent cation, whereas the K m value for NADP (18 M) and the K 1 value for NADPH (42 M) are independent. Throughout all kinetic measurements hyperbolic saturation curves and linear double reciprocal plots were obtained.Abbreviations OAA oxaloacetate - OD optical density  相似文献   

4.
Summary The apparent energy of activation (E a), Michaelis-Menten constant (K mfor oxaloacetate), V max/K mratios and specific activities of NADP+-malate dehydrogenase (NADP+-MDH; EC 1.1.1.82) were analyzed in plants of Barnyard grass from Québec (QUE) and Mississippi (MISS) acclimated to two thermoperiods 28/22°C, 21/15°C, and grown under two CO2 concentrations, 350 l l-1 and 675 l l-1. E avalues of NADP+-MDH extracted from QUE plants were significantly lower than those of MISS plants. K mvalues and V max/K mratios of the enzyme from both ecotypes were similar over the range of 10–30°C but reduced V max/K mratios were found for the enzyme of QUE plants at 30 and 40°C assays. MISS plants had higher enzyme activities when measured on a chlorophyll basis but this trend was reversed when activities were expressed per fresh weight leaf or per leaf surface area. Activities were significantly higher in plants of both populations acclimated to 22/28°C. CO2 enrichment did not modify appreciably the catalytic properties of NADP+-MDH and did not have a compensatory effect upon catalysis or enzyme activity under cool acclimatory conditions. NADP+-MDH activities were always in excess of the amount required to support observed rates of CO2 assimilation and these two parameters were significantly correlated. The enhanced photosynthetic performance of QUE plants under cold temperature conditions, as compared to that of MISS plants, cannot be attributed to kinetic differences of NADP+-malate dehydrogenase among these ecotypes.  相似文献   

5.
The interspecies homology of dace supernatant (A2, AB, B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.This research was supported in part by NSF Grant SM176-83974 and a grant from the Blakeslee Fund.  相似文献   

6.
To explain the six-banded pattern obtained upon electrophoresis of the soluble form of malate dehydrogenase (sMDH, EC 1.1.1.37) from the characiform Hoplias malabaricus, a recent locus duplication of its A isoform (sMDH-A*), in addition to its sMDH-B* isoform, was proposed. Klebe’s serial dilutions carried out using skeletal muscle, heart and liver extracts showed that the A1 and A2 subunits have the same visual end-points, indicating that these A-duplicated genes have a nondivergent pattern. Since there is no evidence of polyploidy in the Erythrinidae family, the MDH-A* loci have probably evolved from regional gene duplication. While these sMDH-A* loci encode nondivergent thermostable isoforms, the sMDH-B* encodes a thermolabile one. Thermostable sMDHs differ from the thermolabile sMDHs in that they have a higher Km of oxaloacetate. Liver, muscle and heart unfractionated sMDH levels at three different temperature and two pH regimens were analysed and the results showed that, in the adaptative temperature range of Hoplias, the variation in Km under conditions of constant pH (imidazole buffer) was less (approximately threefold) than that measured in the presence of temperature-dependent pH imidazole buffer (sevenfold). Estimation of the ratio of both isoforms in these tissues by Klebe’s method showed that, in unfractionated liver – where Km values were the highest and the minimum Km was obtained at 30^C (both for temperature-dependent pH and constant-pH imidazole buffer) – the duplicate A (thermostable, A1 and A2) and B (thermolabile) subunits were detected in a ratio of 2:1. On the other hand, in muscle extracts – in which the lowest Km values were measured, with the minimum Km at 10–20^C (temperature-dependent pH and constant-pH imidazole buffer, respectively) – a ratio of two thermolabile to one thermostable subunits was observed.  相似文献   

7.
Native and recombinant malate dehydrogenase (MDH) was characterized from the hyperthermophilic, facultatively autotrophic archaeon Pyrobaculum islandicum. The enzyme is a homotetramer with a subunit mass of 33 kDa. The activity kinetics of the native and recombinant proteins are the same. The apparent K m values of the recombinant protein for oxaloacetate (OAA) and NADH (at 80°C and pH 8.0) were 15 and 86 μM, respectively, with specific activity as high as 470 U mg−1. Activity decreased more than 90% when NADPH was used. The catalytic efficiency of OAA reduction by P. islandicum MDH using NADH was significantly higher than that reported for any other archaeal MDH. Unlike other archaeal MDHs, specific activity of the P. islandicum MDH back-reaction also decreased more than 90% when malate and NAD+ were used as substrates and was not detected with NADP+. A phylogenetic tree of 31 archaeal MDHs shows that they fall into 5 distinct groups separated largely along taxonomic lines suggesting minimal lateral mdh transfer between Archaea.  相似文献   

8.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

9.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

10.
Malate and succinate were taken up rapidly by isolated, intact peribacteroid units (PBUs) from soybean (Glycine max (L.) Merr.) root nodules and inhibited each other in a competitive manner. Malonate uptake was slower and was severely inhibited by equimolar malate in the reaction medium. The apparent Km for malonate uptake was higher than that for malate and succinate uptake. Malate uptake by PBUs was inhibited by (in diminishing order of severity) oxaloacetate, fumarate, succinate, phthalonate and oxoglutarate. Malonate and butylmalonate inhibited only slightly and pyruvate,isocitrate and glutamate not at all. Of these compounds, only oxaloacetate, fumarate and succinate inhibited malate uptake by free bacteroids. Malate uptake by PBUs was inhibited severely by the uncoupler carbonylcyanidem-chlorophenyl hydrazone and the respiratory poison KCN, and was stimulated by ATP. We conclude that the peribacteroid membrane contains a dicarboxylate transport system which is distinct from that on the bacteroid membrane and other plant membranes. This system can catalyse the rapid uptake of a range of dicarboxylates into PBUs, with malate and succinate preferred substrates, and is likely to play an important role in symbiotic nitrogen fixation. Energization of both the bacteroid and peribacteroid membranes controls the rate of dicarboxylate transport into peribacteroid units.  相似文献   

11.
Formaldehyde dehydrogenase and formate dehydrogenase were purified 45- and 16-fold, respectively, from Hansenula polymorpha grown on methanol. Formaldehyde dehydrogenase was strictly dependent on NAD and glutathione for activity. The K mvalues of the enzyme were found to be 0.18 mM for glutathione, 0.21 mM for formaldehyde and 0.15 mM for NAD. The enzyme catalyzed the glutathine-dependent oxidation of formaldehyde to S-formylglutathione. The reaction was shown to be reversible: at pH 8.0 a K mof 1 mM for S-formylglutathione was estimated for the reduction of the thiol ester with NADH. The enzyme did not catalyze the reduction of formate with NADH. The NAD-dependent formate dehydrogenase of H. polymorpha showed a low affinity for formate (K mof 40 mM) but a relatively high affinity for S-formylglutathione (K mof 1.1 mM). The K mvalues of formate dehydrogenase in cell-free extracts of methanol-grown Candida boidinii and Pichia pinus for S-formylglutathione were also an order of magnitude lower than those for formate. It is concluded that S-formylglutathione rather than free formate is an intermediate in the oxidation of methanol by yeasts.  相似文献   

12.
Malic enzyme was purified 43-fold from Mucor circinelloides. The enzyme was dependent on Mg2+ or Mn2+ for activity, was not active with Dmalate and had a pH optimum at 7.8. The apparent Km values for malate and NADP+ were 488 ΜM and 41 Μm respectively. The Mr of the native enzyme was 160 kDa. Five metabolic analogues of malate: oxaloacetate, tartronic acid, 1-methylenecyclopropane trans-2,3-dicarboxyIic acid, malonic acid and glutaric acid, were found to inhibit malic enzyme activity at 10 mM. Four oleaginous fungi, Mucor circinelloides, Mortierella alpina, Mortierella elongata and Pythium ultimum, were also examined, all possessed a soluble malic enzyme, two also possessed a microsomal malic enzyme.  相似文献   

13.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

14.
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N 5, N 10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N 5,N 10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7±0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the V max rather than the K m of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of M (NH4)2SO4 the V max was 4000 U/mg (k cat=2400 s-1) and the K m for N 5,N 10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 M and 20 M, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90°C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme F420 - CH2=H4MPT N 5,N 10-methylenetrahydromethanopterin - CHH4MPT+ N 5,N 10-methenyltetrahydromethanopterin - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - Mops N-morpholinopropane sulfonic acid - Tricine N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

15.
AxenicTrentepohlia odorata was cultured at three different NH4Cl levels (3.5 × 10–2, 3.5 × 10–3, 3.5 × 10–4 M) and three different light intensities (48, 76, 122 µmol m–2 s–1). Chloride had no effect on growth over this range of concentration. High light intensity and high NH4Cl concentration enhanced the specific growth rate. The carotenoid content increased under a combination of high light intensity and low N concentration. WhenD. bardawil was exposed to the same combination of growth conditions, there was an increase in its carotenoid content. The light saturation and the light inhibition constants (K s andK i, respectively) for growth, and the saturation constant (K m) for NH4Cl were determined. TheK s andK i values were higher inT. odorata (66.7 and> 122 mol m–2 s–1, respectively) than inD. bardawil (5.1 and 14.7 µmol m–2 s–1, respectively). TheK m value determined at 122 µmol m–2 s–1, however, was lower inT. odorata (0.048 µM) than inD. bardawil (0.062 µM).Author for correspondence  相似文献   

16.
We identified and characterized a malate dehydrogenase from Streptomyces coelicolor A3(2) (ScMDH). The molecular mass of ScMDH was 73,353.5 Da with two 36,675.0 Da subunits as analyzed by matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry (MALDI-TOF-MS). The detailed kinetic parameters of recombinant ScMDH are reported here. Heat inactivation studies showed that ScMDH was more thermostable than most MDHs from other organisms, except for a few extremely thermophile bacteria. Recombinant ScMDH was highly NAD+-specific and displayed about 400-fold (k cat) and 1,050-fold (k cat?K m) preferences for oxaloacetate reduction over malate oxidation. Substrate inhibition studies showed that ScMDH activity was inhibited by excess oxaloacetate (K i=5.8 mM) and excess L-malate (K i=12.8 mM). Moreover, ScMDH activity was not affected by most metal ions, but was strongly inhibited by Fe2+ and Zn2+. Taken together, our findings indicate that ScMDH is significantly thermostable and presents a remarkably high catalytic efficiency for malate synthesis.  相似文献   

17.
Some kinetic properties of partially purified phosphoenolpyruvate carboxylase (PEPCase) from guard-cell and mesophyll-cell protoplasts of Commelina communis are described. The PEPCase activity inherent to each cell type was determined and the apparent K m (phosphoenolpyruvate) and K i (malate) were compared. Malate sensitivity was much higher (K i malate 0.4 mol m–3) in the extract of guard-cell protoplasts than in that of mesophyllcell protoplasts (K i malate 4.2 mol m–3). The stimulation of activity by glucose-6-phosphate in the presence of malate (deinhibition) was also investigated in extracts from both cell types and was found to be similar to previously reported results with epidermal tissue. The effect of contamination of an extract of guard-cell protoplasts with mesophyll-cell protoplasts was measured in the presence and absence of malate. It was found that a small amount to mesophyll-cell contaminant appears to desensitize the malate inhibition of PEPCase from guard-cell protoplasts. It is concluded that experiments which use epidermal tissue to study guardcell PEPCase may give misleading information as a consequence of mesophyll contamination.Abbreviations Glc6P glucose-6-phosphate - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase  相似文献   

18.
Electrophoretic studies of malate oxidoreductases routinely assess variation in two enzymes, malate dehydrogenase (EC 1.1.1.37) and malic enzyme (NADP+) (EC 1.1.1.40). By modification of the standard isozyme staining conditions for these enzymes, we have resolved a new NAD+-preferring, MgCl2-requiring malic enzyme which is indicated to be EC 1.1.1.39. The enzyme was detected in 10 salmonid fish species of the generaSalmo, Salvelinus, andOnchoryhncus. Phenotypic variation indicates that the novel enzyme is tetrameric and coded by a single locus. Inheritance inS. salar follows a single-locus model and the phenotypes are unlinked to polymorphisms fors MDH-3,4* andm MEP-2*, two malate oxidoreductase loci previously shown to be variable in this species.This work was supported by a contract to E. V. from Fisheries and Oceans Canada, St. John's, Newfoundland, and a postgraduate award to W. C. J. from the Department of Education for Northern Ireland.  相似文献   

19.
The activity of oxaloacetate decarboxylase was revealed in leaves of a C4 plant, maize (Zea mays L.). This activity was unrelated to decarboxylase activities of other enzymes, e.g., NAD-malate dehydrogenase (EC 1.1.1.38) or NADP-malate dehydrogenase (EC 1.1.1.40), and was located in chloroplasts (83.1%). Using a four-step purification procedure, an electrophoretically pure enzyme preparation of oxaloacetate decarboxylase was obtained from maize leaves. The specific activity of the enzyme was 3.150 EU/mg protein, the factor of purification was 40.4, and the yield was 11.0%. The enzyme exhibited Michaelis–Menten kinetics with K m for oxaloacetate 30 ± 5 M and pH optimum 7.1 ± 0.5. The metabolite-mediated regulation of oxaloacetate decarboxylase activity has been investigated. It is found that sodium chloride (1.0 mM) activates the enzyme, whereas ATP inhibits the enzyme activity.  相似文献   

20.
Yeast alcohol dehydrogenase (EC 1.1.1.1) catalyzes the novel reduction of p-nitro-so-N,N-dimethylaniline with NADH as a cofactor. Apparent kinetic constants for this enzymatic reaction are: V 2=2.1 s–1, K Q=456 M, K iQ=119 M, and K P=1.47 mM, at pH 8.9, 25 °C. This reaction is especially useful for the quantitative determination of NAD+ and NADH by enzymatic cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号