首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Transpositional activity of mobile elements is not constant. Conditional regulation of host factors involved in transposition may severely change the activity of mobile elements. We have demonstrated previously that transposition of Tn4652 in Pseudomonas putida is a stationary phase-specific event, which requires functional sigma S (Ilves et al., 2001, J Bacteriol 183: 5445-5448). We hypothesized that integration host factor (IHF), the concentration of which is increased in starving P. putida, might contribute to the transposition of Tn4652 as well. Here, we demonstrate that transposition of Tn4652 in stationary phase P. putida is essentially limited by the amount of IHF. No transposition of Tn4652 occurs in a P. putida ihfA-defective strain. Moreover, overexpression of IHF results in significant enhancement of transposition compared with the wild-type strain. This indicates that the amount of IHF is a bottleneck in Tn4652 transposition. Gel mobility shift and DNase I footprinting studies revealed that IHF is necessary for the binding of transposase to both transposon ends. In vitro, transposase can bind to inverted repeats of transposon only after the binding of IHF. The results obtained in this study indicate that, besides sigma S, IHF is another host factor that is implicated in the elevation of transposition in stationary phase.  相似文献   

2.
3.
4.
5.
As reported, the two-component system ColRS is involved in two completely different processes. It facilitates the root colonization ability of Pseudomonas fluorescens and is necessary for the Tn4652 transposition-dependent accumulation of phenol-utilizing mutants in Pseudomonas putida. To determine the role of the ColRS system in P. putida, we searched for target genes of response regulator ColR by use of a promoter library. Promoter screening was performed on phenol plates to mimic the conditions under which the effect of ColR on transposition was detected. The library screen revealed the porin-encoding gene oprQ and the alginate biosynthesis gene algD occurring under negative control of ColR. Binding of ColR to the promoter regions of oprQ and algD in vitro confirmed its direct involvement in regulation of these genes. Additionally, the porin-encoding gene ompA(PP0773) and the type I pilus gene csuB were also identified in the promoter screen. However, it turned out that ompA(PP0773) and csuB were actually affected by phenol and that the influence of ColR on these promoters was indirect. Namely, our results show that ColR is involved in phenol tolerance of P. putida. Phenol MIC measurement demonstrated that a colR mutant strain did not tolerate elevated phenol concentrations. Our data suggest that increased phenol susceptibility is also the reason for inhibition of transposition of Tn4652 in phenol-starving colR mutant bacteria. Thus, the current study revealed the role of the ColRS two-component system in regulation of membrane functionality, particularly in phenol tolerance of P. putida.  相似文献   

6.
7.
Dissemination of the bacterial transposon Tn10 is limited by target site channeling, a process wherein the transposon ends are forced to interact with and insert into a target site located within the transposon. Integration host factor (IHF) promotes this self-destructive event by binding to the transpososome and forming a DNA loop close to one or both transposon ends; this loop imposes geometric and topological constraints that are responsible for channeling. We demonstrate that a second ‘host’ protein, histone-like nucleoid structuring protein (H-NS), acts as an anti-channeling factor to limit self-destructive intramolecular transposition events in vitro. Evidence that H-NS competes with IHF for binding to the Tn10 transpososome to block channeling and that this event is relatively insensitive to the level of DNA supercoiling present in the Tn10-containing substrate plasmid are presented. This latter observation is atypical for H-NS, as H-NS binding to other DNA sequences, such as promoters, is generally affected by subtle changes in DNA structure.  相似文献   

8.
9.
The ends of the bacterial transposon gamma delta contain adjacent binding sites for gamma delta transposase and integration host factor (IHF). IHF+ and IHF- strains were used in conjunction with gamma delta transposon ends containing or lacking the site for IHF binding to determine the role that IHF plays in various gamma delta-mediated transposition events. IHF was not essential for the transposition of gamma delta and seemed to decrease its frequency of transposition about threefold. IHF played no role in determining the distribution of gamma delta inserts into a target replicon, nor did it significantly alter the frequency of simple transpositions. The only clear role discerned for IHF and the terminal IHF-binding sites was in transposition immunity. IHF stimulated the immunity of those plasmids that contain an end of gamma delta, provided the end included the terminal IHF-binding site. For both ends, the degree of stimulation of immunity was similar to the stimulation of binding of transposase by IHF.  相似文献   

10.
Bacteria use two-component signal transduction pathways to sense both extracellular and intracellular environment and to coordinate cellular events according to changing conditions. Adaptation can be either physiological or genetical. Here, we present evidence that a genome reorganization process such as transposition can be controlled by certain environmental cues sensed by a two-component signal transduction system. We demonstrate that transposition-dependent accumulation of phenol-utilizing mutants is severely decreased in Pseudomonas putida defective in a two-component system colRS. Translocation of Tn4652 is decreased both in colR- and colS-defective strains, indicating that signal transduction from a histidine kinase ColS to a response regulator ColR is necessary for the activation of Tn4652 in bacteria starving on phenol. However, overexpression of ColR in a colS-defective strain restores Tn4652 transposition, suggesting that absence of the signal from ColS can be compensated by an elevated amount of ColR. In vitro analysis of purified ColR and ColS proteins evidenced that they constitute a functional phosphorelay. Site-directed mutagenesis revealed that a conserved H221 can be the phosphoryl-accepting residue in ColS and that aspartate residues D8 and D51 of ColR are necessary for the phosphotransfer from ColS to ColR. To our knowledge, Tn4652 is the first bacterial transposon regulated by a two-component system. This finding indicates that transpositional activity can respond to signals sensed and processed by the host.  相似文献   

11.
12.
Tn10 transposition, like all transposition reactions examined thus far, involves assembly of a stable protein-DNA transpososome, containing a pair of transposon ends, within which all chemical events occur. We report here that stable Tn10 pre-cleavage transpososomes occur in two conformations: a folded form which contains the DNA-bending factor IHF and an unfolded form which lacks IHF. Functional analysis shows that both forms undergo double strand cleavage at the transposon ends but that only the unfolded form is competent for target capture (and thus for strand transfer to target DNA). Additional studies reveal that formation of any type of stable transpososome, folded or unfolded, requires not only IHF but also non-specific transposase-DNA contacts immediately internal to the IHF-binding site, implying the occurrence of a topo- logically closed loop at the transposon end. Overall, transpososome assembly must proceed via a folded intermediate which, however, must be unfolded in order for intermolecular transposition to occur. These and other results support key features of a recently proposed model for transpososome assembly and morphogenesis.  相似文献   

13.
Conjugative transposition of transposon Tn916 has been shown to proceed by excision of the transposon in the donor strain and insertion of this element in the recipient. This process requires the product of the transposon int gene. We report here the surprising finding that the int gene is required only in the donor during conjugative transposition. We find that Tn916 int-1, whose int gene has been inactivated by an insertion mutation, transposes when a complementing wild-type int gene is present only in the donor during mating. When the int+ gene is present in a plasmid and is expressed from the spac promoter, conjugative transposition is very inefficient. However, when the Int+ function is supplied from a coresident distantly linked Tn916 tra-641 mutant, which is defective in a function required for conjugation, efficient conjugative transposition of Tn916 int-1 occurs. This suggests either that Int is not required for integration of Tn916 in gram-positive bacteria or that the protein is transferred from the donor to the transconjugant during the mating event. When the nonconjugative plasmid pAT145 was present in the donor, it was rarely cotransferred with Tn916. This suggests that complete fusion of mating cells is not common during conjugative transposition.  相似文献   

14.
We have purified TnsB, a transposition protein encoded by the bacterial transposon Tn7. The purification procedure involves three chromatographic steps (DNA-cellulose, norleucine-Sepharose, and phosphocellulose) and yields milligram quantities of highly purified protein. The apparent molecular mass of denatured TnsB protein is approximately 85 kDa. Gel filtration chromatography and sucrose gradient sedimentation studies indicate that in solution, native TnsB is a monomer of nonspherical shape. Using DNase I protection analysis, we established that TnsB is a sequence-specific DNA-binding protein that recognizes multiple sites in both ends of the transposon. The TnsB binding sites, three in the left end of Tn7 and four in the right end, are highly related in nucleotide sequence and are located in DNA segments that we have previously shown contain cis-acting sequences important for Tn7 transposition. Our results also show that one of the TnsB binding sites overlaps a proposed promoter for the transposition genes of Tn7. These studies suggest that the specific binding of TnsB to the ends of Tn7 mediates recombination and may also regulate the expression of Tn7-encoded transposition genes.  相似文献   

15.
16.
17.
Tsuda M  Genka H 《Journal of bacteriology》2001,183(21):6215-6224
It has been reported that the toluene-degrading (xyl) genes from Pseudomonas putida plasmid pWW53 are able to translocate to broad-host-range drug resistance plasmid RP4, and pWW53-4 is one of the smallest RP4 derivatives (H. Keil, S. Keil, R. W. Pickup, and P. A. Williams, J. Bacteriol. 164:887-895, 1985). Our investigation of pWW53-4 in this study demonstrated that such a translocated region that is 39 kb long is a transposon. This mobile element, Tn4656, was classified as a class II transposon since its transposition occurred by a two-step process: transposase (TnpA)-mediated formation of the cointegrate and resolvase (TnpR)-mediated site-specific resolution of the cointegrate at the two copies of the res site. The Tn4656 TnpA and TnpR functions encoded in the rightmost 4-kb region were found to be exchangeable with those specified by other Tn1721-related class II transposons, including another toluene transposon, Tn4653. Sequence analysis of the transposition-related genes and sites of Tn4656 also supported the hypothesis that this transposon is closely related to the Tn1721-related transposons. The lower transposition frequency of Tn4656 has been suggested to be due to the unique nucleotide sequence of one of the terminal 39-bp inverted repeats.  相似文献   

18.
19.
Tge transposon Tn21 has been transposed from R100.1 to plasmid pACYC184 and, from the resulting recombinants, to plasmid R388. The sites of insertion and the orientation of the element in several pACYC184::Tn21 recombinants have been examined. Restriction enzyme analysis of these recombinants has resulted in a detailed map of Tn21; this is compared with the published maps of the relevant part of R100.1. Heteroduplex analysis has shown short inverted repeat sequences at the ends of the element. With various in vitro-generated deletion mutants of Tn21, the internal gene necessary for transposition (tnpA) was localized within the terminal 4.3 kilobases of the right-hand end of the element. Genetic analysis of transposition of Tn21 suggests that the process proceeds via cointegrates. Since the end products of transposition are simple recombinants of the element and the recipient replicon, Tn21 must contain a gene that codes for a resolvase type of activity (tnpR gene).  相似文献   

20.
A A Miaé  A L Khe?naru 《Genetika》1991,27(3):389-398
Camphor degradative plasmids (CAM, pRK1) are preferentially situated on chromosomes of Pseudomonas putida strains PaW. After having been transferred into Cam+ strains, the TOL plasmid pWWO dissociates into the cryptic plasmid pWWO-8 and chromosome-borne transposon Tn4651. The opposite situation, i.e. reconstruction of the TOL plasmid pWWO from the cryptic plasmid pWWO-8 and chromosome-borne catabolic operons of the pWWO plasmid has been described. Cam- derivatives of the CAM plasmid were obtained in vivo which contain the TOL plasmid transposons Tn4651 or Tn4652 as obligatory structural elements. These plasmids as well as pWWO-8 determine conjugational mobilization of chromosome-located cam operons followed by their integration into the chromosome of recipient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号