首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Prostaglandin F2 alpha (PGF2 alpha) is a well-known luteolytic factor in the rat corpus luteum. To investigate a possible luteal origin of PGF2 alpha, measurements of this prostaglandin were performed in different luteal tissues in vivo. Prostaglandin E2 (PGE2) and the stable metabolite of prostacyclin, 6-keto-PGF1 alpha, were assayed simultaneously. Corpora lutea of different ages from 57 pregnant and pseudopregnant rats (mated with sterile males) were rapidly excised, dissected in 0 degree C indomethacin solution, homogenized, and extracted for prostaglandins with solid-phase extraction cartridges. Prostaglandins were determined by radioimmunoassay. Plasma levels of progesterone and 20 alpha-dihydroprogesterone were also monitored. In the adult pseudopregnant rat model, luteolysis occurs at Day 13 +/- 1, and maximal levels of all three prostaglandins were detected on Day 13 of pseudopregnancy: 0.40 +/- 0.02, 2.6 +/- 0.29, and 1.76 +/- 0.24 pmol/mg protein (mean +/- SEM, n=7) for PGF2 alpha, PGE2, and 6-keto-PGF1 alpha respectively. In pregnant rats, on the corresponding day, levels were considerably lower: 0.15 +/- 0.02, 0.90 +/- 0.13, and 0.50 +/- 0.06 pmol/mg protein (mean +/- SEM, n=9, p less than 0.0001), respectively. Luteal levels in pregnant rats showed a continuous decline on Days 13 and 19 for all prostaglandins measured, whereas in pseudopregnant rats an increment of PGF2 alpha was noted between Days 7 and 13 and remained high on Day 19. PGE2 closely followed levels of PGF2 alpha, but at a 5- to 10-fold higher level. The coefficient of correlation between PGF2 alpha and PGE2 in the luteal compartment of both models was 0.87 (p less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Insulin-like growth factor-I (IGF-I) is produced within the porcine corpus luteum (CL) and is thought to play an autocrine/paracrine role in CL development/function during the early luteal phase. This study examines the hypotheses that the luteolytic actions of prostaglandin F(2alpha) (PGF(2alpha)) during the early luteal phase may involve either a decrease in IGF-I or IGF receptor (IGF-IR), or an increase in IGF binding protein (IGFBP)-3, expression, any of which could interfere with the luteotropic actions of IGF-I in this tissue. Cycling gilts were treated twice daily with PGF(2alpha) (or saline) on Days 5-9 of the cycle to induce premature luteolysis. CL were collected on Days 6-9, and RNA, protein, or progesterone was extracted. By slot blot analysis, steady-state levels of IGF-I and IGFBP-3 mRNA were not different in PGF(2alpha)-treated vs. control animals; however, IGF-IR mRNA was increased in treated animals on Day 9. No changes in IGF-I content (ng/CL measured by RIA) were observed with respect to treatment. According to ligand blot analysis, the levels of IGFBP-3 increased on Day 6 and decreased on Days 8-9, while IGFBP-2 was higher on Days 6-7 and decreased on Day 9 in treated animals. IGF-IR levels, determined from Western blots, were higher on Day 7 (P < 0.05) and lower on Day 9 in PGF(2alpha)-treated animals vs. control animals (P < 0.05). In conclusion, PGF(2alpha)-induced premature luteolysis was associated with an increase in steady-state levels of IGF-IR mRNA, but it did not appear to be linked to changes in mRNA levels for IGF-I or IGFBP-3. However, since IGFBP-2 and -3 protein levels increased early in the treatment period (Days 6-7), it is possible that they may mediate the luteolytic actions of PGF(2alpha) by sequestering IGF-I and preventing its interaction with the IGF-IR.  相似文献   

3.
Previous studies show that hysterectomy on Day 1 of pseudopregnancy prolongs serum progesterone secretion in estrogen-treated pseudopregnant rabbits. These studies were undertaken to determine the day of pseudopregnancy when uterine factors are released to alter luteal function. When hysterectomies were performed on either Day 5, 8, 10, or 13 of pseudopregnancy, serum progesterone concentrations were greater than 10 ng/ml between Days 18 and 27 of pseudopregnancy compared to levels of approximately 4 ng/ml in sham-hysterectomized rabbits on these same days. In contrast, serum progesterone levels were not elevated when hysterectomies were performed on Day 11 of pseudopregnancy and were only partially maintained when hysterectomies were performed on Day 12 of pseudopregnancy. Twice daily injections of prolactin (1.5 mg, s.c.) between Days 1 and 33 of pseudopregnancy were unable to mimic the effect of estradiol in the hysterectomized rabbit. Twice daily injections of indomethacin (8 mg/kg, s.c.) between Days 6 and 23 of pseudopregnancy lowered uterine and luteal prostaglandin F2 alpha levels approximately 10-fold on Day 24 of pseudopregnancy but did not maintain progesterone secretion. Serum cholesterol levels were not altered by hysterectomy on any day and were thus not related to the maintenance of progesterone production. These results suggest that the uterus produces both inhibitory and stimulatory factors that effect luteal progesterone secretion. First, an inhibitor is released between Days 10 and 11 of pseudopregnancy in estrogen-treated rabbits that prevents the rabbit corpus luteum from responding to estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The ability of de novo biosynthesis of prostaglandins (PGs) in individual whole corpora lutea (CL) obtained from sterile-mated adult pseudopregnant rats on different days of the luteal phase and the post-luteolytic period was evaluated. Production of PGs, progesterone and 20 alpha-dihydroprogesterone were determined after in vitro incubation of CL extirpated from Day 2 to Day 19 after mating. A time-relationship with increased accumulation of PGs in the medium was demonstrated from 18 s to 5 h, with large increments during the first 30 min. Basal accumulation of PGs in the incubation medium was highest for 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) greater than PGE2 greater than PGF2 alpha greater than thromboxane B2 (TXB2) and basal accumulation of PGF2 alpha and PGE2 measured in the medium was maximal on Day 10-11 of pseudopregnancy, concomitantly with a decline in secretion of progesterone. Addition of arachidonic acid (AA) dose-dependently increased synthesis of PGs, with absolute amounts of PGE2 greater than 6-keto-PGF1 alpha greater than PGF2 alpha greater than TXB2 and addition of 14 microM indomethacin markedly inhibited accumulation of all PGs measured. Luteinizing hormone (LH, 10 micrograms/ml) stimulated progesterone secretion on all days during pseudopregnancy, but not on the post-luteolytic Day 19. LH increased PGF2 alpha, PGE2 and 6-keto-PGF1 alpha secretion on Day 13 of pseudopregnancy by 76%, 91% and 28%, respectively, but not on the other days tested. Furthermore, stimulation of PG-synthesis by addition of AA abrogated the LH-induced progesterone accumulation markedly, but only on Day 13 of pseudopregnancy. Epinephrine (5 micrograms/ml) increased production of progesterone and also PGs, but only on Day 2 of pseudopregnancy, whereas oxytocin (100 mIU/ml) was found to be without effect on progesterone as well as PG secretion on all days tested. The results of the present study demonstrates the independent ability of the rat CL to synthesize PGG/PGH2-derived prostaglandins, including the putative luteolysin PGF2 alpha. Secondly, we demonstrate that LH and AA-induced increases in PGF2 alpha and PGE2 production during the luteolytic period, may be an autocrine or paracrine mechanism involved in luteolysis.  相似文献   

5.
The luteolysis which terminated pseudopregnancy (PSP) in superovulated hamsters was studied. Spontaneous luteolysis occurred before 1100 on Day 7 of PSP and was characterized by a rapid decline in circulating progesterone levels. Luteolysis induced by prostaglandin F2 alpha (PGF2 alpha) on Day 5 of PSP displayed a similar rapid reduction in progesterone over 24 hours. In both cases levels of the progesterone metabolite 20 alpha hydroxypregn-4-ene-3-one (20 alpha-OHP) were less than 2 percent of progesterone levels and declined in a manner similar to progesterone. This suggests that conversion of progesterone or its precursors to 20 alpha-OHP was not a functional aspect of luteolysis in the hamster. Pretreatment with either prolactin (PRL), luteinizing hormone (LH) or follicle stimulating hormone (FSH) failed to prevent PGF2 alpha-induced luteolysis on Day 5 in the superovulated PSP hamster. Combinations of PRL and LH, LH and FSH or PRL and FSH were also unsuccessful in abrogating luteolysis. However, pretreatment with a combination of PRL, FSH and LH prevented luteolysis in 11/14 animals. These results suggest that luteotropic agents can reverse the luteolytic effects of PGF2 alpha in the hamster.  相似文献   

6.
Brown hares were made pseudopregnant by sterile matings or PMSG-hCG treatment (day of mating or hCG injection = Day 0 of pseudopregnancy). Progesterone secretion by the CL began 3-4 days after the ovulatory stimuli, reached maximum on Days 8 to 11 and decreased thereafter to reach low levels from Day 9 to 18, depending on the female. Cauterization of all large ovarian follicles on Day 7 resulted in an immediate luteolysis in young females, but had no effect in older ones. Oestradiol capsules implanted from Day 7 to Day 46 were able to maintain progesterone secretion until at least Day 30, in intact females as well as in females with all large follicles cauterized. Hysterectomy on Day 7 or 8 was followed by an immediate drop in progesterone concentrations; oestradiol capsules implanted at the time of hysterectomy prevented the drop in progesterone values, which remained elevated until Day 38. The induction of ovulation in females hysterectomized 2 months before resulted in CL of slightly shortened life-span. The injection of PGF-2 alpha on Day 7 of pseudopregnancy was followed by an immediate luteolysis. These results suggest that oestradiol secreted by the large ovarian follicles is the main luteotrophic factor in the brown hare. In old hares, the large amount of interstitial tissue could secrete oestrogens, and thus maintain pseudopregnancy. On Day 7 of pseudopregnancy, the uterus secretes a luteotrophic substance acting either directly on the ovary, or via the pituitary, to maintain oestradiol secretion by the follicles. In long-term hysterectomized females, the CL would be able to develop independently of any trophic substance, but for a reduced duration.  相似文献   

7.
The release of luteal oxytocin during spontaneous and prostaglandin-induced luteolysis was investigated in cows. A continuous-flow microdialysis system was used in 11 cows to collect dialysates of the luteal extracellular space between Days 12 and 24 postestrus. Seven cows were untreated and were expected to exhibit spontaneous luteolysis during sampling, whereas 4 cows received prostaglandin F(2alpha) (PGF(2alpha)) systemically between Days 13 and 15 to induce luteolysis during sampling. Oxytocin was detectable in the dialysate of all cows before Day 16 postestrus and occurred as 2 or 3 discrete pulses per 12-h sampling period. For non-PGF(2alpha)-treated cows, dialysate oxytocin content began to decline spontaneously on Day 15 postestrus and was undetectable by Day 17 postestrus. Oxytocin decay curves preceded onset of serum progesterone decline by at least 72 h and were not related temporally with onset of progesterone decline within cow. Exogenous PGF(2alpha) (25 mg, i.m.) produced a 10-fold increase in dialysate oxytocin within 1 h (1.9 +/- 0.3 pg/ml to 20.8 +/- 3.0 pg/ml; P < 0. 01). Dialysate oxytocin then declined to pretreatment concentrations within 2 h and was undetectable within 8 h posttreatment. A second PGF(2alpha) injection given 20 h after the first did not result in a measurable increase in dialysate oxytocin, probably because luteolysis was underway. Although robust luteal oxytocin release was observed after treatment with a pharmacological dose of PGF(2alpha), the lack of detectable oxytocin secretion during spontaneous luteolysis suggests that the contribution of luteal oxytocin in the cow may be less than that proposed for the ewe.  相似文献   

8.
The effects of prostaglandin F2 alpha (PGF2 alpha) administration on the utilization of low density lipoprotein (LDL) and progesterone secretion were examined in dispersed luteal cells from rat ovaries. Immature rats were rendered pseudopregnant with administration of pregnant mare serum gonadotropin and human chorionic gonadotropin. Animals were sacrificed at different times after PGF2 alpha (5 mg/kg) or vehicle administration on day-5 of pseudopregnancy. Administration of PGF2 alpha in vivo decreased human chorionic gonadotropin (hCG) binding to luteal cell membranes in vitro but enhanced binding of LDL. Utilization of labelled cholesterol for steroid synthesis from reconstituted LDL [(3H)-CL-LDL] by dispersed luteal cells was enhanced following PGF2 alpha administration. This suggests that the LDL pathway is not suppressed during prostaglandin induced luteolysis. Progesterone and total progestin secretion in response to N6-2'-0-Dibutyryladenosine 3'5'-cyclic monophosphate (cAMP) was decreased at 2, 4 and 24 hours following PGF2 alpha administration demonstrating a post-cAMP defect in steroidogenesis. Addition of the hydroxylated sterols, 20 or 25-OH cholesterol as substrate stimulated progesterone secretion in vehicle treated rats in a dose dependent fashion with 20-OH cholesterol being more potent. Progesterone secretion in response to stimulation with luteinizing hormone (LH) and cAMP from vehicle treated rats was less than that observed with 20 or 25-OH cholesterol, indicating that endogenous substrate may be a limiting factor in steroid synthesis. The maximal capacity of luteal tissue to produce progestins following PGF2 alpha administration was determined with 20-OH cholesterol as the substrate. The results suggest that the post-cAMP defect at 4 hours following PGF2 alpha administration may be due to failure of the cells to mobilize endogenous cholesterol. However at 24 hours following PGF2 alpha administration the decreased ability of luteal cells to convert cholesterol to pregnenolone may contribute to decreased progesterone synthesis.  相似文献   

9.
10.
Luteolysis is caused by a pulsatile release of prostaglandin F(2alpha) (PGF(2alpha)) from the uterus in ruminants, and a positive feedback between endometrial PGF(2alpha) and luteal oxytocin (OXT) has a physiologic role in the promotion of luteolysis. The bovine corpus luteum (CL) produces vasoactive substances, such as endothelin 1 (EDN1) and angiotensin II (Ang II), that mediate and progress luteolysis. We hypothesized that luteal OXT has an additive function to ensure the CL regression with EDN1 and Ang II, and that it has an active role in the luteolytic cascade in the cow. Thus, the aim of the present study was to observe real-time changes in the local secretion of luteal OXT and to determine its relationship with other local mediators of luteolysis. Microdialysis system (MDS) capillary membranes were implanted surgically into each CL of six cyclic Holstein cows (18 lines total among the six cows) on Day 15 (estrus == Day 0) of the estrous cycle. Simultaneously, catheters were implanted to collect ovarian venous plasma ipsilateral to the CL. Although the basal secretion of OXT by luteal tissue was maintained during the experimental period, the intraluteal PGF(2alpha) secretion gradually increased up to 300% from 24 h after the onset of luteolysis (0 h; time in which progesterone started to decrease). In each MDS line (microenvironment) within the CL, the local releasing profiles of OXT were positively associated with PGF(2alpha) and EDN1 within the CL in all 18 MDS lines implanted in the six CLs (OXT vs. PGF(2alpha), 50.0%; OXT vs. EDN1, 72.2%; P < 0.05). On the other hand, the intraluteal OXT was weakly related to Ang II (OXT vs. Ang II, 27.7%). In the ovarian vein, the peak concentration of PGF(2alpha) increased significantly when the peak of PGF(2alpha) coincided with the peak of OXT after the onset of spontaneous luteolysis (P < 0.05). In conclusion, intraluteal OXT may locally modulate secretion of vasoactive substances, particularly EDN1 and PGF(2alpha) within the CL, and thus might be one of the luteal mediators of spontaneous luteolysis in the cow.  相似文献   

11.
The effect of prostaglandin F2 alpha (PGF2 alpha) on luteinizing hormone (LH) receptors, weight and progesterone content of corpora lutea (CL), and serum progesterone concentrations was studied in gilts. Fifteen gilts were hysterectomized between Days 9 to 11 of the estrous cycle. Twelve gilts were injected i.m. with 10 mg of PGF2 alpha and 3 with saline on Day 20. Ovaries were surgically removed from each of 3 gilts at 4, 8, 12 and 24 h following PGF2 alpha treatment and from the 3 control gilts 12 h following saline injection. Jugular blood samples for progesterone analysis were collected from all gilts at 0, 2 and 4 h following treatment and at 8, 12 and 24 h for gilts from which ovaries were removed at 8, 12 and 24 h, respectively. Mean serum progesterone and CL progesterone concentrations decreased within 4 h after PGF2 alpha treatment (P less than 0.05) and remained low through 24 h after treatment. The number of unoccupied LH receptors decreased by 4 h (P less than 0.05) and this trend continued through 24 h. There were no differences in luteal weight or affinity of unoccupied LH receptors of luteal tissue at 4, 8 12 and 24 h after PGF2 alpha when compared to luteal tissue from controls. These data indicate that during PGF2 alpha-induced luteolysis in the pig, luteal progesterone, serum progesterone concentrations and the number of LH receptors decrease simultaneously.  相似文献   

12.
The relationship of the antepartum elevation in serum relaxin levels in pregnant rats to luteolysis was examined by determining the effects of the luteolysin prostaglandin F2 alpha (PGF2 alpha) and the prostaglandin synthetase inhibitor indomethacin on antepartum serum relaxin levels, as well as on luteolysis and birth. Intravenous administration of PGF2 alpha on the morning of Day 20 elevated serum relaxin levels approximately fourfold within 15 min. Administration of the prostaglandin synthetase inhibitor indomethacin from Day 19 until Day 23 protracted luteolysis, delayed or prevented birth, and delayed the antepartum elevation of serum relaxin levels, until after indomethacin treatment had been terminated. Collectively, these results indicate that prostaglandins, in particular PGF2 alpha, may promote the antepartum increase in serum relaxin levels, as well as luteolysis and birth in rats.  相似文献   

13.
Conflicting reports exist regarding the source of luteolytic PGF2 alpha in the rat ovary. To assess the quantities of different PGs, measurements of PGF2 alpha, PGE and PGB were performed by radioimmunoassay in the adult pseudopregnant rat ovary throughout the luteal lifespan. Ovaries of 84 rats were separated by dissection into two compartments, corpora lutea of pseudopregnancy and remainder of ovary. Tissue samples were homogenized and prostaglandins extracted and determined by radioimmunoassay. During the mid-luteal and late-luteal phases, levels of PGs were significantly higher in the corpora lutea of pseudopregnancy than in the remainder of ovary. An increase of PGF2 alpha-content in the corpus luteum was registered with peak-levels of 53.9 +/- 8.5 (mean +/- SEM, N = 18) ng/g tissue wet weight at day 13 of pseudopregnancy. PGE-levels reached peak-values at day 11 of pseudopregnancy (271.6 +/- 28.4 ng/g w w, mean +/- SEM, N = 12). PGB-levels were below detection limits in all compartments for all ages studied. The present study demonstrates increased availability of PGF2 alpha in the corpus luteum during the luteolytic period, and points toward either increased luteal synthesis or luteal binding of PGF2 alpha during the luteolytic period.  相似文献   

14.
This study examines differences in intracellular responses to cloprostenol, a prostaglandin (PG)F(2alpha) analog, in porcine corpora lutea (CL) before (Day 9 of estrous cycle) and after (Day 17 of pseudopregnancy) acquisition of luteolytic capacity. Pigs on Day 9 or Day 17 were treated with saline or 500 microgram cloprostenol, and CL were collected 10 h (experiment I) or 0.5 h (experiment III) after treatment. Some CL were cut into small pieces and cultured to measure progesterone and PGF(2alpha) secretion. In experiment I, progesterone remained high and PGF(2alpha) low in luteal incubations from either Day 9 or Day 17 saline-treated pigs. Cloprostenol increased PGF(2alpha) production 465% and decreased progesterone production 87% only from Day 17 luteal tissue. Cloprostenol induced prostaglandin G/H synthase (PGHS)-2 mRNA (0.5 h) and protein (10 h) in both groups. In cell culture, cloprostenol or phorbol 12, 13-didecanoate (PDD) (protein kinase C activator), induced PGHS-2 mRNA in luteal cells from both groups. However, acute cloprostenol treatment (10 min) decreased progesterone production and increased PGF(2alpha) production only from Day 17 luteal cells. Thus, PGF(2alpha) production is induced by cloprostenol in porcine CL with luteolytic capacity (Day 17) but not in CL without luteolytic capacity (Day 9). However, this change in PGF(2alpha) production is not explained by a difference in induction of PGHS-2 mRNA or protein.  相似文献   

15.
Prostaglandin (PG) E2 was the major PG released from the superfused guinea-pig uterus on Day 7, followed by in descending order 6-oxo-PGF1 alpha, thromboxane (TX) B2 and PGF2 alpha. However, the outputs of all four substances were low and were very similar. By Day 15, PGF2 alpha output from the superfused uterus had increased 21.9-fold, whereas the outputs of PGE2, 6-oxo-PGF1 alpha and TXB2 had increased only 1.8-, 2.9- and 1.2-fold, respectively. A mechanism is apparently "switched on" between Days 7 and 15 which causes a fairly specific increase in the release of PGF2 alpha from the uterus. Progesterone and/or estradiol had no effect on PG or TX release when superfused over the uterus on Day 7, nor did they have any effect on PG and TX release from the Day 15 uterus when administered separately. When administered together, however, they significantly inhibited PGF2 alpha, PGE2 and 6-oxo-PGF1 alpha, but not TXB2, release from the Day 15 uterus. Oxytocin had no effect on PG release from the Day 7 or Day 15 uterus, while A23187 stimulated PGF2 alpha, 6-oxo-PGF1 alpha and, to a lesser extent, PGE2 release from the uterus on both Days 7 and 15. Oxytocin is apparently not important for stimulating PGF2 alpha release from the guinea-pig uterus in relation to luteolysis, whereas increasing intracellular free Ca++ levels may be part of the mechanism for "switching on" uterine PG synthesis. Furthermore, changes in intracellular free Ca++ levels in the endometrium may be responsible for the pulsatile nature of PGF2 alpha release from the uterus.  相似文献   

16.
Effects of PGE1 or PGE2 on luteal function were studied in 163 pseudopregnant rats. PGE1 (10, 100, or 300 micrograms) given intrauterine every 6 hr did not shorten pseudopregnancy (P greater than 0.05), however, the same doses of PGE2 given intrauterine every 6 hr advanced luteolysis (P less than 0.05). PGE1 (100 or 300 micrograms) given every 4 hr intramuscular maintained levels of progesterone in peripheral blood above controls (P less than 0.05) while 100 or 300 micrograms of PGE2 hastened the decline in progesterone (P less than 0.05). The antiluteolytic effect of PGE1 was not via an inhibition of PGF secretion (P greater than 0.05) by the uterus or by induction of ovulation in treated animals. Moreover, PGE1 (100, 200, or 500 micrograms) given intramuscular every 4 hr from day 4 of pseudopregnancy until the next proestrus delayed luteal regression around 3 days (P less than 0.05). PGE2 at doses of 100, 200, or 500 micrograms every 4 hr given intramuscular consistently shortened pseudopregnancy (P less than 0.05). Lower doses were without effect (P greater than 0.05). Based on the above data it is concluded that PGE2 is consistently luteolytic whereas PGE1 is not luteolytic in pseudopregnant rats and that PGE1 may be an antiluteolysin.  相似文献   

17.
Wistar strain albino rats were hysterectomized and the estrous cycle was compared with sham operated controls. Duration of estrous cycle in hysterectomized rats increased markedly with significant delay in the luteal phase and this was correlated to the inhibited follicular development of ovary. When these rats were treated with PGF2 alpha and PMSG and subjected to physical exercises, the estrous cycle was synchronised and the ovaries of such animals had active follicular development. Thus the deranged operation of sexual cycle in hysterectomized rats was regulated through physical exercises.  相似文献   

18.
Receptors for prostaglandin (PG) F2 alpha in the ovine corpus luteum are localized on large steroidogenic luteal cells. Therefore, it was hypothesized that during luteolysis, the first demonstrable effects of PGF2 alpha would occur in the population of large luteal cells. To test this hypothesis, the numbers and sizes of large and small luteal cells, fibroblasts, capillary endothelial cells, and pericytes were determined in corpora lutea collected 12, 24, or 36 h (6 animals/group) following administration of PGF2 alpha on Day 10 postestrus and from untreated ewes on Days 10 and 12 postestrus. The numbers and sizes of luteal cells were determined after enzymatic dissociation of the luteal tissue into single cell suspensions and by morphometric analysis of luteal slices. Serum levels of progesterone decreased (p less than 0.05) within 12 h of treatment, indicating that luteolysis was induced. Recovery of the two types of steroidogenic luteal cells following enzymatic dissociation was different (p less than 0.05). Recovery of both steroidogenic cell types decreased with time after PGF2 alpha treatment, suggesting that they had become more fragile. As determined by morphometry, the number of large luteal cells was not different at any time point examined; however, by 36 h after treatment, the average diameter of large luteal cells had decreased (p less than 0.05). In contrast, by 24 h after treatment, there was a decrease in the number of small luteal cells (p less than 0.05) but no change in their diameter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号