首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The advantages of bivalent hapten-bearing peptides for the detection oftumours pretargeted with bispecific antibodies have been demonstrated. Thistechnology is now considered for radioimmunotherapy and bivalent haptensdesigned to target 131I are needed. We thus synthesised aseries of tyrosine-containing peptides bearing the histamine-hemisuccinatehapten. These molecules were tested for their ability to bind simultaneouslytwo anti-hapten antibody molecules. One of these bivalent haptens, AG3.0,with a lysyl-d-tyrosyl-lysine connecting chain, was found to have optimalbinding characteristics and was thus selected for further investigations.AG3.0 was shown to efficiently deliver radioactive iodine to humancolorectal tumours grafted in nude mice using an anti-carcinoembryonicantigen×anti-histamine-hemisuccinate bispecific antibody. AG3.0 wasalso targeted to human B lymphoma cells pretargeted with a bispecificantibody specific for membrane IgM. In this system, bivalent ligands such asF(ab)2 or IgG are rapidly internalised and covalentlylinked radioactive iodine is released from target cells as a result ofintracellular catabolism. With the pretargeted iodine-labelled bivalenthapten, a fivefold increase in the intracellular activity retention time ascompared to 125I-labelled F(ab)2 and IgGwas observed. The radiolabelled hapten did not undergo any degradation afterinternalisation. These results have been confirmed in vivo with ananti-BCL1 IgM idiotype bispecific antibody and131I-labelled AG3.0. These reagents injected as a single 300µCi dose, 7 days after inoculation of 104BCL1 lymphoma cells in BALB/c mice, cured 14/16 of the animalsand the treatment was well tolerated. Comparatively, the same dose oflabelled IgG cured 13/16 of the mice but three mice died of haematologictoxicity. The same dose of labelled F(ab)2 orFab was completely inefficient. was completely inefficient. 131I-labelled bivalenthaptens are now used in phase I radioimmunotherapy clinical trials.  相似文献   

2.

Background

To date, inefficient delivery of therapeutic doses of radionuclides to solid tumors limits the clinical utility of radioimmunotherapy. We aim to test the therapeutic utility of Yttrium-90 (90Y)-radio-conjugates of a monoclonal antibody, which we showed previously to bind specifically to the abundant intracellular La ribonucleoprotein revealed in dead tumor cells after DNA-damaging treatment.

Methodology/Principal Findings

Immunoconjugates of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®, were prepared using the metal chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and then radiolabeled with 90Y. Mice bearing established subcutaneous tumors were treated with 90Y-DOTA-DAB4 alone or after chemotherapy. Non-radiosensitizing cyclophosphamide/etoposide chemotherapy was used for the syngeneic EL4 lymphoma model. Radiosensitizing cisplatin/gemcitabine chemotherapy was used for the syngeneic Lewis Lung carcinoma (LL2) model, and for the xenograft models of LNCaP prostatic carcinoma and Panc-1 pancreatic carcinoma. We demonstrate the safety, specificity, and efficacy of 90Y-DOTA-DAB4-radioimmunotherapy alone or combined with chemotherapy. EL4 lymphoma-bearing mice either were cured at higher doses of radioimmunotherapy alone or lower doses of radioimmunotherapy in synergy with chemotherapy. Radioimmunotherapy alone was less effective in chemo- and radio-resistant carcinoma models. However, radioimmunotherapy synergized with radiosensitizing chemotherapy to retard significantly tumor regrowth and so prolong the survival of mice bearing LL2, LNCaP, or Panc-1 subcutaneous tumor implants.

Conclusions/Significance

We report proof-of-concept data supporting a unique form of radioimmunotherapy, which delivers bystander killing to viable cancer cells after targeting the universal cancer antigen, La, created by DNA-damaging treatment in neighboring dead cancer cells. Subsequently we propose that DAB4-targeted ionizing radiation induces additional cycles of tumor cell death, which further augments DAB4 binding to produce a tumor-lethal ‘genotoxic chain reaction’. Clinically, this approach may be useful as consolidation treatment after a drug-induced cell death among (small-volume) metastatic deposits, the commonest cause of cancer death.This article is part II of a two-part series providing proof-of-concept for the diagnostic and therapeutic use of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®.  相似文献   

3.

Purpose

Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

Methods

Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent.

Results

The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes.

Conclusion

90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.  相似文献   

4.
Introduction: For treatment of malignant glioma, radioimmunotherapy has become a valuable alternative for more than 2 decades. Surprisingly, very little is known about the distribution of intralesionally administered labelled antibodies or fragments. We investigated the migration of labelled antibodies and antibody fragments injected into intact and partly resected C6-glioma in rats at different times after injection. Materials and methods: Nine days after induction of a C6-glioma, 5 l of 125I-labelled murine anti-tenascin antibodies (n=31) or 125I-labelled fragments of anti-tenascin antibodies (n=32) was injected slowly into the tumour (group I). In group II the tumour was subtotally resected 9 days after induction of the C6-glioma, and 24 h later the labelled antibodies (n=30) or fragments (n=12) were injected into the resection cavity. At 6, 24 or 48 h after the injection, animals were sacrificed, and brains removed. Distribution of labelled antibodies and fragments was determined by superimposing autoradiographs onto frozen sections and HE-stained neighbouring sections using a digital image analysing system. Results: After injection into intact C6-glioma, labelled antibodies covered a maximum distance of 3.2 ± 1.0, 4.1 ± 1.9 and 4.8 ± 0.9 mm after 6, 24 and 48 h, respectively; while labelled fragments were found at a distance of 6.7 mm (±1.1) after 24 h and 5.8 mm (±0.9) after 48 h (significant in univariate analysis). Following partial tumour resection, the respective distances at 24 h were 3 ± 0.4 mm for anti-tenascin antibodies and 3.4 ± 0.3 mm for Fab fragments. Conclusion: After injection into C6-glioma, labelled fragments are able to cover a greater distance than labelled antibodies. Injection of antibodies and fragments 1 day after tumour resection results in reduced velocity of both antibodies and fragments.  相似文献   

5.
Summary The toxicity of 5-iodo-2-deoxyuridine (I-UdR) was assayed in male C57 BL/6J mice bearing the syngeneic mammary adenocarcinoma EO 771 by injecting different doses of cold I-UdR or 125-iodine labelled I-UdR. Host survival, tumour growth, DNA-precursor incorporation, whole-body retention and tumour activity loss rates were chosen as biological end points.There was no measurable effect on host survival up to doses of 5 µg I-UdR or 50 µCi125I-UdR per mouse during a mean life-span of 25 days. Adjusted to a constant amount of 0.55 µg I-UdR/mouse, radiotoxicity of125I-UdR on tumour growth (up to 17 days after implantation), tracer incorporation, whole-body and tumour retention (up to 12 days after125I-UdR injection) could be excluded up to a dosage of 50 µCi125I-UdR/mouse.It is concluded that in situ evaluation of tumour activity loss rates in carcinoma EO 771 is not disturbed by toxic effects of I-UdR or125I-UdR within the dose limits mentioned.  相似文献   

6.
When DBA/2 mice are inoculated both intraperitoneally (i.p.) and subcutaneously (s.c.) with syngeneic SL2 lymphoma cells and treated i.p. on day 10–14 with 20,000 units IL-2/day, about 50% of the mice reject both the ascitic tumour and the s.c. tumour. During IL-2 therapy large areas of necrosis appear in the solid SL2 tumours between day 12 and 15. Immunohistochemical studies show that only a small number of infiltrating cells is present in the tumours. The percentage of macrophages (MHC-II+)in the tumours is about 1 and the percentage of T-lymphocytes (-TCR+) about 0.5. No differences in the numbers of infiltrating cells are seen in untreated and IL-2 treated tumour bearing mice. The tumoursurrounding infiltrate consists mainly of mononuclear cells: about 50% macrophages, 20% CD8+ cells, and 15% CD4+ cells. No tumour-infiltrating cells were found that express the IL-2 receptor.We conclude that direct cytotoxic activity of tumour infiltrating cells cannot account for the rapid occurrence of necrosis.When L3T4+ cells were eliminated by treating the mice with-L3T4 monoclonal antibodies before tumor inoculation and treatment with rIL-2, tumor eradication did not occur. So, L3T4+ helper T-cells are essential for IL-2-mediated tumour regression. Exogenous rIL-2 is not directly responsible for the induced tumour regression. A significant stagnation of intratumoural bloodflow is observed after histological analysis; yet it still needs to be determined whether this is the primary cause or consequence of the observed necrosis.Abbreviations BSA bovine serum albumin - CTL cytotoxic T-lymphocyte - FACS fluorescence activated cell sorter - HE haematoxylin and eosin - IFN interferon - IL-2 interleukin-2 - IL-2R interleukin-2 receptor - i.p. intraperitoneal(ly) - i.V. intravenous(ly) - LAK lymphokine-activated killer - MHC major histocompatibility complex - PBS phosphate buffered saline - s.c. subcutaneous(ly) - TCR T-cell receptor - TNF tumour necrosis factor  相似文献   

7.
Summary Pancreatic islet B cells depolarize and display trains of action potentials in response to stimulatory concentrations of glucose. Based on data from rodent islets these action potentials are considered to be predominantly Ca2+ dependent. Here we describe Na+-dependent action potentials and Na+ currents recorded from canine and human pancreatic islet B cells. Current-clamp recording using the nystatin perforated-patch technique demonstrates that B cells from both species display tetrodotoxin-sensitive Na+ action potentials in response to modest glucose-induced depolarization. In companion whole-cell voltage-clamp experiments on canine B cells, the underlying Na+ current displays steep voltage-dependent activation and inactivation over the range of –50 to –40 mV. The Na+ current is sensitive to tetrodotoxin block with aK 1=3.2nm and has a reversal potential which changes with [Na+] o as predicted by the Nernst equation. These results suggest that a voltage-dependent Na+ current may contribute significantly to action potential generation in some species outside the rodent family.  相似文献   

8.
Summary The capacitance-conductance bridge described here has been developed particularly for dielectric measurements of biological materials where well defined flux lines for a large range of frequencies are desired, which are produced by electrode arrangements with guard-rings. The bridge is a symmetrical Wheatstone network with inductively coupled ratio arms.It is important that the current density and phase shift of the guard-ring circuit can be of the same order as that of the sample circuit. A particular range of admittances exists, dependent on the frequency and ratio arms used, where the bridge is able to measure conductance as well as capacitance of the sample with an accuracy of better than 1 %. The method of testing the ratio arms used and of determining their range of sample admittances is described. This range covers approximately two to three decades ofC/G values of the sample, and phase angles between 0.2 and 80 degrees in the frequency range from 20 Hz to 500 kHz, The maximum value ofC/G of this range is about 5×10–2 sec at 20 Hz, the minimum value 5×10–9 sec at 500 kHz. The decades used in the standard arm of the bridge are 1 –1 to 0.9 –1 in the conductance range and 0.1 pF to 90 nF in the capacitance range. The bridge described is particularly suitable for measurements on biological materials with high dielectric constants and high conductivity. As matching the ratio arms is readily possible, the range of admittances can be changed if necessary by the procedure described.  相似文献   

9.
Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP+) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed. The tumour growth suppression was shown to be a result of the antioxidant action of low nanomolar concentrations of SkQ1. We have revealed significant prolongation of mitosis induced by SkQ1 in both tumour cell cultures. Prolonged mitosis and apoptosis could be responsible for growth suppression after SkQ1 treatment in RD cells. Growth suppression in HT1080 cells was accompanied by the delay of telophase and cytokinesis, followed by multinuclear cells formation. The effects of SkQ1 on the cell cycle were proved to be at least partially mediated by inactivation of Aurora family kinases.

Abbreviations: TPP+: Triphenylphosphonium cation; ROS: Reactive oxygen species; mtROS: Mitochondrial reactive oxygen species; NAC: N-acetyl-L-cysteine; DCFH-DA: Dichlorodihydrofluorescein diacetate; APC: Anaphase promoting complex; ABPs: Actin-binding proteins; DMEM: Dulbecco’s modified Eagle media; SDS: sodium dodecyl sulfate; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   


10.
Summary Tumour-infiltrating lymphocytes (TIL) of paediatric tumours obtained from 37 lesions of different histo-type (12 osteosarcomas, 5 Wilms' tumours, 7 soft-tissue sarcomas, 5 neuroblastomas and 8 miscellaneous) were studied to establish their potential for therapy. Fresh isolated TIL were cultured for the first 2 weeks with low doses of interleukin-2 (IL-2) (20 Cetus U/ml) to select for tumour-specific lymphocytes potentially present in the neoplastic lesion, followed by culture with high doses of IL-2 (1000 Cetus U/ml) to achieve TIL expansion. TIL were grown with more than 10-fold expansion in only 9 cases (mean expansion: 58-fold, range 13.5–346). In 17 cases no viable cells were obtained. After 30 days of culture with IL-2 the proliferative ability of TIL declined sharply in the majority of cases and TIL became refractory to any further stimulus, including addition of IL-4, tumour necrosis factor (TNF) or interferon , and activation with OKT3 in solid phase. In 20 out of 37 cases TIL were available for phenotypic and functional analysis. TIL after long-term culture were predominantly CD3+ but 2 cases of osteosarcoma showed a predominance of CD3+TcR / cells. The CD4/CD8 ratio was more than 1 in 10 cases, without correlation with tumour histology, site of lesion or TIL growth. The number of CD16+ and CD25+ lymphocytes decreased progressively during culture, the latter concomitantly with a reduction of TIL growth rate. The lytic pattern of TIL against allogeneic and autologous tumour (Auto-Tu) cells was variable, but specific lysis of Auto-Tu was seen in only one case (Wilms' tumour) after culture with TNF and irradiated Auto-Tu cells. The immunohistochemical analysis of tumour lesions revealed a limited lymphocyte infiltrate, a low expression of histocompatibility leukocyte antigens (HLA) class I and of the adhesion molecules ICAM1, LFA3, and a significant production of transforming growth factor (TGF). These data indicate that TIL obtained from paediatric patients are difficult to expand at levels required for immunotherapy and lack a significant number of tumour-specific T lymphocytes. A low expression of immunomodulatory molecules on tumour cells or the production of suppressive factors may prevent activation and expansion of TIL in paediatric tumours.  相似文献   

11.
12.
Macroscopic instantaneous and time-dependent currents have been measured in the vacuolar membrane of Beta vulgaris using a patch clamp configuration analogous to whole cell mode. At low cytosolic Ca2+ and in the absence of Mg2+, only an instantaneous current was observed. This current is carried predominantly by cations (PKPCl 71, pnapcl 41 and arginine is also conducted). The instantaneous current can be activated by ATP4– (e.g., ATP-activated mean K+ current density was –20 mA.m–2 at a membrane voltage of –20 mV) and by increasing cytosolic pH and Mg2+ (raising Mg2+ from 0 to 0.4 mm induced a mean current density increase of –7 mA.m–2 at –20 mV). Such current can be activated by simultaneous addition of putative in vivo concentrations of ATP4–/MgATP/Mg free 2+ (in the presence of bafilomycin to inhibit the vacuolar ATPase) and further modulated by cytosolic pH. With vacuolar K+ concentration greater than that of the cytosol, activation of the instantaneous current would mediate vacuolar K+ release over the range of physiological membrane voltage. It is argued that the ATP4–-activated current, in addition to acting as a K+ mobilization pathway, could provide a counter-ion (shunt) conductance, allowing the two electrogenic H+ pumps which reside in the vacuolar membrane to acidify the vacuolar lumen.A separate time-dependent current, which was not observed at low Ca2+ concentrations (less than 500 nm) could also be elicited by addition of Mg2+ at the cytoplasmic membrane face. This current was stimulated by increasing cytoplasmic pH.The authors are grateful to the BBSRC for financial support (Grant PG87/529) and to the Royal Society (University Research Fellowship to J.M.D.). We thank C. Abbott, K. Partridge and J. Robinson for plant cultivation; A. Amtmann, A. Bertl, D. Gradmann and G. Thiel for helpful discussion.  相似文献   

13.
Human skin tumours often regress spontaneously due to immune rejection. Murine skin tumours model this behaviour; some regress and others progress in syngeneic immunocompetent hosts. Previous studies have shown that progressor but not regressor skin tumours inhibit dendritic cell (DC) migration from the tumour to draining lymph nodes, and transforming growth factor-1 (TGF-1) has been identified as a responsible factor. To determine whether increased production of TGF-1 in the absence of other differences inhibits DC migration from the tumour and enables it to evade immune destruction, a murine regressor squamous cell carcinoma clone was transfected with the gene for TGF-1. This enhanced growth in vitro and in vivo, causing it to become a progressor. TGF-1 transfection reduced the number of infiltrating DCs by about 25%. Quantitation of CD11c+ E-cadherin+ (epidermally derived) DCs in lymph nodes determined that TGF-1 reduced the number of DCs that migrated from the tumour to undetectable levels. This was supported by showing that TGF-1 reduced DC migration from cultured tumour explants by greater than tenfold. TGF-1 transfection also reduced the number of infiltrating CD4 and CD8 T cells. Thus, TGF-1 production by skin tumours is sufficient to immobilise DCs within the tumour, preventing their migration to lymph nodes. This reduces the number of T cells that infiltrate the tumour, preventing regression. Thus, TGF-1 is a key regulator of whether skin tumours regress or progress.  相似文献   

14.
Cytotoxic Effects of Peritoneal Neutrophils on a Syngeneic Rat Tumour   总被引:4,自引:0,他引:4  
SPECIFIC immunological phenomena directed against tumour cells which influence their behaviour and growth in vivo and in vitro have been clearly established1,2. In contrast, nonspecific defences against cancer have received little attention, although such mechanisms are important in preventing microbial infection3. Recently there have been indications that such non-specific defences against cancer cells exist but the underlying processes are undefined. Increases in reticuloendothelial activity frequently occur during tumour growth4; stimulants of non-specific defences, such as the BCG strain of Mycobacterium tuberculosis and Corynebacterium parvum, inhibit tumour growth5,6; and induction of inflammation by vaccinia7 or dichloronitrobenzene8 in skin overlying a tumour may induce regression. Most attempts to analyse these phenomena implicate unsensitized lymphocytes9 and macrophages10, although the cytotoxic properties of these cells compared with specifically sensitized cells are low11. Little has been written about the possible role of neutrophils, although their presence in tumours is not infrequent12. The probable role of neutrophils in contributing to the cytotoxic activity in vitro of leucocyte populations towards various allogeneic and syngeneic cell types has been discussed13 and Bubenik et al.14 have postulated an action of neutrophils against human bladder tumours. Recently Godleski et al.15 showed movement of neutrophils towards cells of Walker carcinosarcoma 256 growing on chick chlorioallantoic membranes or cover-slips, followed by contact and damage to tumour cell membranes. This article describes preliminary studies demonstrating in vitro and in vivo a significant cytotoxic effect of rat peritoneal neutrophils against a syngeneic ascites tumour, WBP1(A), < 10 cells of which will produce a tumour16,17.  相似文献   

15.
Summary Monoclonal antibody 138H11 against human -glutamyltransferase has been shown to react immunohistochemically with 98% of all tested clear-cell type and chromophilic renal cell carcinomas, but not with renal chromophobic carcinomas, Duct-Bellini carcinomas or oncocytomas. In normal kidney the target epitopes of mAb 138H11 are located in the luminal brush-border membrane of proximal tubule cells, whereas in renal carcinomas the epitopes are found surrounding the whole tumour cells. These results form the basis of the present immunoscintigraphic study designed to evaluate mAb 138H11 in an extracorporeal perfusion model. Immediately after nephrectomy, human tumour-bearing kidneys were perfused with99mTc-labelled mAb 138H11 in Euro-Collins solution. High specific uptake in 4/4 renal clear cell carcinomas could be demonstrated by planar immunoscintigraphy and single-photon-emission computed tomography, regions of interest investigation and immunohistochemistry. In contrast, a perfused oncocytoma showed up as an unlabelled lesion. The results indicate a possible use for mAb 138H11 in immunoscintigraphy or even therapy, provided high tumour uptake can be confirmed in patients.  相似文献   

16.
Therapies that target the signal transduction and biological characteristics of cancer stem cells (CSCs) are innovative strategies that are used in combination with conventional chemotherapy and radiotherapy to effectively reduce the recurrence and significantly improve the treatment of glioblastoma multiforme (GBM). The two main strategies that are currently being exploited to eradicate CSCs are (a) chemotherapeutic regimens that specifically drive CSCs toward cell death and (b) those that promote the differentiation of CSCs, thereby depleting the tumour reservoir. Extracellular purines, particularly adenosine triphosphate, have been implicated in the regulation of CSC formation, but currently, no data on the role of adenosine and its receptors in the biological processes of CSCs are available. In this study, we investigated the role of adenosine receptor (AR) subtypes in the survival and differentiation of CSCs isolated from human GBM cells. Stimulation of A1AR and A2BAR had a prominent anti-proliferative/pro-apoptotic effect on the CSCs. Notably, an A1AR agonist also promoted the differentiation of CSCs toward a glial phenotype. The differential effects of the two AR agonists on the survival and/or differentiation of CSCs may be ascribed to their distinct regulation of the kinetics of ERK/AKT phosphorylation and the expression of hypoxia-inducible factors. Most importantly, the AR agonists sensitised CSCs to the genotoxic activity of temozolomide (TMZ) and prolonged its effects, most likely through different mechanisms, are as follows: (i) by A2BAR potentiating the pro-apoptotic effects of TMZ and (ii) by A1AR driving cells toward a differentiated phenotype that is more sensitive to TMZ. Taken together, the results of this study suggested that the purinergic system is a novel target for a stem cell-oriented therapy that could reduce the recurrence of GBM and improve the survival rate of GBM patients.Glioblastoma multiforme (GBM), classified as grade IV on the World Health Organization scale,1 is the most common type of primary malignant brain tumour.2 The current therapeutic strategy includes surgery followed by radiation and chemotherapy using temozolomide (TMZ). This therapeutic approach slightly improves the survival rate of GBM patients, but their prognosis remains poor and most patients die of tumour recurrence.3 The causes of the recurrence of GBM are complex and include the high proliferative index of the tumour cells and their resistance to chemotherapy and radiotherapy, particularly in the case of the cancer stem cells (CSCs). These cells have been proposed to not only initiate the genesis of GBM and contribute to its highly proliferative nature, but to also be the basis for its recurrences following treatment. Moreover, it has been reported that the most aggressive or refractory cancers contain the highest number of CSCs.4, 5, 6These findings suggest that innovative stem cell-orientated therapy may be an effective strategy to reduce tumour recurrence and significantly improve GBM treatment outcomes.7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 This type of therapy may not be easy to implement because CSCs have been shown to have a low level of reactive oxygen species19 and to be more resistant to ionising radiation,20 vincristine,21 hypoxia and other chemotherapeutics22 compared with non-CSCs. In contrast, the preferential elimination of the CSC population may contribute to the effectiveness of TMZ, which is the most effective pharmacologic agent used in glioma treatment;23 however, the activity of TMZ appears to be short lived because the drug causes the reversible blockage of the cell cycle of CSCs.24 Moreover, long-term TMZ therapy results in the occurrence of drug-resistant GBM cells,25 indicating the need to develop distinct strategies to overcome this resistance.Extracellular purines have been implicated in several aspects of GBM biology, such as proliferation,26 migration,27 invasion28 and death.29 The concentration of adenosine in the extracellular fluid of glioma tissue was reported to be in the low micromolar range,30 which is sufficiently high to stimulate all the four of the adenosine receptor (AR) subtypes (A1, A2A, A2B and A3).31 Each of the ARs have a pivotal role in the control of tumour growth and invasiveness32, 33, 34 but to date, no data on their role in CSC biology are available. Recently, it was demonstrated that treatment with adenosine triphosphate reduced the rate of sphere formation by glioma cells and that purinergic receptors are differentially expressed in spheres of tumour cells and adherent cells.33 In this study, we investigated the role of AR subtypes in the survival and differentiation of CSCs. Globally, our data clarified the role of each AR subtype in CSC functionality and suggested that the purinergic system is a novel pharmacological target for the development of new anti-CSC therapies, particularly those aimed at the treatment of GBM recurrences.  相似文献   

17.
Cell surface glycoconjugates play an important role in cellular recognition and adhesion. Modification of these structures in tumour cells could affect tumour cell growth and behaviour, including metastasis. 2-Acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro--D-glycopyranose (4-F-GlcNAc) was synthesized as a potential inhibitor and/or modifier of tumour cell glycoconjugates. The effect of this sugar analogue on the adhesive properties of human colon carcinoma HT-29 cells was evaluated. Treatment of HT-29 cells with 4-F-GlcNAc led to reduced cell surface expression of terminal lactosamine, sialyl-Lex and sialyl-Lea, as determined by Western blotting and flow cytometry. The aberrant expression of these oligosaccharide structures on the HT-29 cell surface resulted in: (1) decreased E-selectin mediated adhesion of human colon cells to human umbilical cord endothelial cells (HUVEC); (2) impaired adhesion of HT-29 cells to -galactoside binding lectin, galectin-1; and (3) reduced ability to form homotypic aggregates. After exposure to 4-F-GlcNAc, lysosomal associated membrane proteins (lamp) 1 and 2, and carcinoembryonic antigen (CEA) detected in HT-29 cells were of lower molecular weight, probably due to impaired glycosylation. These results strongly suggest that modification of tumour cell surface molecules can alter tumour cell adhesion and that tumour cell surface oligosaccharides may be suitable targets for therapeutic exploitation.Abbreviations 4-F-GlcNAc 2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro--glucopyranose - GlcNAc N-acetylglucosamine - s-Lex sialyl-Lewisx - s-Lea sialyl-Lewisa - lamp-1 and lamp-2 Lysosomal Associated Membrane Protein 1 and 2 - CEA carcinoembryonic antigen - DMEM Dulbecco's Modified Eagle Medium - PBS Phosphate Buffered Saline (2.7 mM KCl, 1.5 mM KH2PO4, 137 mM NaCl, 6.5 mM Na2HPO4, pH 7.3) - BSA Bovine Serum Albumin - PMSF Phenylmethylsulfonylfluoride - TBS Tris Buffered Saline (10 mM Tris, 20 mM NaCl, pH 7.3) - TCA Trichloroacetic Acid - DSA Datura stramonium agglutinin  相似文献   

18.

Objective

Interferon‐inducible 16 (IFI16) is known to involve in p53‐dependent tumour suppression and also the formation of inflammasome, which function, however, remains controversy during carcinogenesis as a pattern recognition receptor for tumour death‐derived free DNA. In this study, we investigated the anti‐tumour role of IFI16 in hepatocellular carcinoma (HCC).

Materials and methods

Hepatocellular carcinoma tissues (n = 20) and corresponding non‐neoplastic tissues (n = 20) were collected to determine the expression of IFI16. After the transfection of pcDNA3.1‐IFI16 into Huh7 and SMMC7721 cells in vitro, the influence of IFI16 overexpression on cell vitality, colony formation, apoptosis and migration were analysed. The role effect of IFI16 in vivo was further investigated.

Results

The expression of IFI16 was significantly decreased in tumour tissues and cell lines. Overexpression of IFI16 induced decrease of cell vitality, colony formation and increased apoptosis with impaired ability of migration. Mechanistically, IFI16 could activate p53 at Ser15 to up‐regulate the p21WAF1/CIP1 level to inhibit tumour growth and migration, which was restored by the p53 inhibitor Pifithrin‐α (20 μmol/L). Moreover, IFI16‐induced tumour cell death promoted the recruitment of inflammasome complex to enhance tumour inhibition, but the caspase‐1 inhibitor Ac‐YVAD‐CMK (50 μmol/L) could suppress this process in HCC. The results in vivo indicated that restored expression of IFI16 in tumour cells effectively promote tumour regression, which could be partly abrogated by the inhibition of activation of p53 signals or induced inflammasome.

Conclusion

IFI16 is a tumour suppressor in HCC via activation of p53 signals and inflammasome.
  相似文献   

19.
The possibility of in vivo removal of metastatic tumour cells from lymph nodes by local intradermal administration of an anti-CD3 monoclonal antibody (mAb) was examined. Murine tumour cells in the lymph nodes were completely eradicated by intradermal injections of the mAb. This treatment was effective for removal of Lewis lung cancer cells from lymph nodes, but not for removal of subcutaneous tumours of this cell line. This treatment induced in vivo cytotoxicity in the regional lymph nodes against the syngeneic tumour cells. The following in vitro studies suggested that the cytotoxicity was probably mediated mainly by CD4+ T cells, with slight participation of CD8+ T cells. Normal lymph node and spleen cells showed cytotoxicity after in vitro incubation with the mAb for 2 days. Cell sorting with a fluoresceinactivated cell sorter showed that CD4+ T cells developed during the incubation to lyse syngeneic tumor cells directly by themselves, macrophages not being involved in this tumour cell lysis. The lytic activity was detected in the cellular fractions, but not in the culture supernatants of these T cells. Furthermore, it was completely blocked by specific antiserum for tumour necrosis factor- (TNF). An immunoprecipitation study revealed that these T cells expressed TNF molecules of 26 kDa, but not of 17 kDa, suggesting that tumour cell lysis was caused by membraneintegrated TNF molecules. These results strongly suggest that local administration of anti-CD3 antibody is a very effective and appropriate procedure for eradication of metastatic tumour cells from regional lymph nodes.  相似文献   

20.
Summary Superfusion with Pb2+ induces a slow, noninactivating and reversible inward current in voltage-clamped N1E-115 neuroblastoma cells. The amplitude of this inward current increases in the range of 1–200 m Pb2+. Single-channel patch-clamp experiments have revealed that this inward current is mediated by discrete ion channels. Reversal potentials from linearI–V relationships are close to 0 mV for whole-cell and single-channel currents and the single-channel conductance amounts to 24 pS. The Pb2+-induced membrane current is not mediated by various known types of ion channels, since it is not blocked by external tetrodotoxin, tetraethylammonium,d-tubocurarine, atropine, ICS 205-930 and by internal EGTA. In Na+-free solutions superfusion with Pb2+ neither evokes a whole-cell inward current, nor single-channel openings. At –80 mV the open-time distribution of the single channels activated by 1m Pb2+ is dual exponential with time constants of 17 and 194 msec. When the Pb2+ concentration is increased from 1 to 20 m these time constants decrease to 2 and 13 msec, but the amplitude of single-channel currents remains –1.9 nA. Cd2+ and Al3+ induce inward currents and single-channel openings similar to Pb2+. Time constants fitted to the open-time distribution of single channels are 14 and 135 msec in the presence of 1 m Cd2+ and 15 and 99 msec in the presence of 50 m Al3+. Conversely, Cu2+ induces an irreversible inward current in neuroblastoma cells. Single-channel openings are undetected in the presence of Cu2+ and in Na+-free solutions Cu2+ is still able to induce an inward current. It is concluded that Pb2+, Cd2+ and possibly Al3+ activate a novel type of metal ionactivated (MIA) channel in N1E-115 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号