首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hint1 is a homodimeric protein and member of the ubiquitous HIT superfamily. Hint1 catalyzes the hydrolysis of purine phosphoramidates and lysyl-adenylate generated by lysyl-tRNA synthetase (LysRS). To determine the importance of homodimerization on the biological and catalytic activity of Hint1, the dimer interface of human Hint1 (hHint1) was destabilized by replacement of Val(97) of hHint1 with Asp, Glu, or Arg. The mutants were shown to exist as monomers in solution by a combination of size exclusion chromatograph, static light scattering, and chemically induced dimerization studies. Circular dichroism studies revealed little difference between the stability of the V97D, V97E, and wild-type hHint1. Relative to wild-type and the V97E mutant, however, significant perturbation of the V97D mutant structure was observed. hHint1 was shown to prefer 3-indolepropionic acyl-adenylate (AIPA) over tryptamine adenosine phosphoramidate monoester (TpAd). Wild-type hHint1 was found to be 277- and 1000-fold more efficient (k(cat)/K(m) values) than the V97E and V97D mutants, respectively. Adenylation of wild-type, V97D, and V97E hHint1 by human LysRS was shown to correlate with the mutant k(cat)/K(m) values using 3-indolepropionic acyl-adenylate as a substrate, but not tryptamine adenosine phosphoramidate monoester. Significant perturbations of the active site residues were not detected by molecular dynamics simulations of the hHint1s. Taken together, these results demonstrate that for hHint1; 1) the efficiency (k(cat)/K(m)) of acylated AMP hydrolysis, but not maximal catalytic turnover (k(cat)), is dependent on homodimerization and 2) the hydrolysis of lysyl-AMP generated by LysRS is not dependent on homodimerization if the monomer structure is similar to the wild-type structure.  相似文献   

2.
Chou TF  Sham YY  Wagner CR 《Biochemistry》2007,46(45):13074-13079
Although highly sequence similar, human histidine triad nucleotide binding protein (hHint1) and E. coli hinT (echinT) exhibit significant differences in their phosphoramidase substrate specificity and lysyl-adenylate hydrolytic activity. Observing that the C termini of each enzyme are highly dissimilar, we created two chimeric Hint's: one in which the C terminus of hHint1 was replaced with the C terminus of echinT (Hs/ec) and the other in which the C terminus of echinT was replaced with the C terminus of hHint1 (ec/Hs). The Hs/ec chimera exhibited nearly identical specificity constants (kcat/Km) to those found for echinT, whereas the specificity constants of the ec/Hs chimera were found to approximate those for hHint1. In particular, as observed for echinT, the Hs/ec chimera does not exhibit a preference for phosphoramidates containing d- or l- tryptophan, while the ec/Hs chimera adopts the human enzyme preference for the l configuration. In addition, the studies with each chimera revealed that differences in the ability of hHint1 and echinT to hydrolyze lysyl-AMP generated by either E. coli or human lysyl-tRNA synthetase were partially transferable by C-terminal loop exchange. Hence, our results support the critical role of the C-terminal loop of human and E. coli Hint1 on governing substrate specificity.  相似文献   

3.
4.
The histidine triad (HIT) protein Hint has been found to associate with mammalian Cdk7, as well as to interact both physically and genetically with the budding yeast Cdk7 homologue Kin28. To study the function of Hint and to explore its possible role in modulating Cdk7 activity in vivo, we have characterized the expression pattern of murine Hint and generated Hint-deficient (Hint(-/-)) mice. Hint was widely expressed during mouse development, with pronounced expression in several neuronal ganglia, epithelia, hearts, and testes from embryonic day 15 onward. Despite this widespread expression, disruption of Hint did not impair murine development. Moreover, Hint-deficient mice had a normal life span and were apparently healthy. Histological examination of tissues with high Hint expression in wild-type animals did not show signs of abnormal pathology in Hint(-/-) mice. Functional redundancy within the HIT family was addressed by crossing Hint(-/-) mice with mice lacking the related HIT protein, Fhit, and by assaying the expression levels of the HIT protein gene family members Hint2 and Hint3 in Hint(+/+) and Hint(-/-) tissues. Finally, Cdk7 kinase activity and cell cycle kinetics were found to be comparable in wild-type and Hint(-/-) mouse embryonic fibroblasts, suggesting that Hint may not be a key regulator of Cdk7 activity.  相似文献   

5.
6.
The recently described pneumococcal histidine triad protein family has been shown to be highly conserved within the pneumococcus. As part of our structural genomics effort on proteins from Streptococcus pneumoniae, we have expressed, crystallised and solved the structure of PhtA-166-220 at 1.2 Angstroms using remote SAD with zinc. The structure of PhtA-166-220 shows no similarity to any protein structure. The overall fold contains 3beta-strands and a single short alpha-helix. The structure appears to contain a novel zinc binding motif. The remaining 4 histidine triad repeats from PhtA have been modelled based on the crystal structure of the PhtA histidine triad repeat 2. From this modelling work, we speculate that only three of the five histidine triad repeats contain the residues in the correct geometry to allow the binding of a zinc ion.  相似文献   

7.
The product of human fragile histidine triad (FHIT) gene is a tumor suppressor protein of still largely unknown cellular background. We have shown previously that it binds protoporphyrin IX (a photosensitizer) which alters its enzymatic activity in vitro. Fhit, diadenosine triphosphate (Ap3A) hydrolase, possesses the active site with histidine triad His-φ-His-φ-His-φφ. So-called histidine Fhit mutants (His94Asn, His96Asn and His98Asn) exhibit highly reduced activity in vitro, however, their antitumor function has not been fully described yet. In this work we have cloned the cDNAs of histidine mutants into pPROEX-1 vector allowing the production of His6-fusion proteins. The mutated proteins: Fhit-H94N, Fhit-H96N and Fhit-H98N, were expressed in Escherichia coli BL21(DE3) and purified (up to 95%) by an improved, one-step affinity chromatography on Ni-nitrilotriacetate resin. The final yield was 2 mg homogenous proteins from 1 g bacteria (wet wt). The activity of purified proteins was assessed by previously described assay. The same purification procedure yielded 0.8 mg/ml and highly active wild-type Fhit protein (K m value for Ap3A of 5.7 μM). Importantly, purified mutant forms of Fhit also interact with a photosensitizer, protoporphyrin IX in vitro.  相似文献   

8.
9.
Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.  相似文献   

10.
Calicivirus proteases cleave the viral precursor polyprotein encoded by open reading frame 1 (ORF1) into multiple intermediate and mature proteins. These proteases have conserved histidine (His), glutamic acid (Glu) or aspartic acid (Asp), and cysteine (Cys) residues that are thought to act as a catalytic triad (i.e. general base, acid and nucleophile, respectively). However, is the triad critical for processing the polyprotein? In the present study, we examined these amino acids in viruses representing the four major genera of Caliciviridae: Norwalk virus (NoV), Rabbit hemorrhagic disease virus (RHDV), Sapporo virus (SaV) and Feline calicivirus (FCV). Using single amino‐acid substitutions, we found that an acidic amino acid (Glu or Asp), as well as the His and Cys in the putative catalytic triad, cannot be replaced by Ala for normal processing activity of the ORF1 polyprotein in vitro. Similarly, normal activity is not retained if the nucleophile Cys is replaced with Ser. These results showed the calicivirus protease is a Cys protease and the catalytic triad formation is important for protease activity. Our study is the first to directly compare the proteases of the four representative calicivirus genera. Interestingly, we found that RHDV and SaV proteases critically need the acidic residues during catalysis, whereas proteolytic cleavage occurs normally at several cleavage sites in the ORF1 polyprotein without a functional acid residue in the NoV and FCV proteases. Thus, the substrate recognition mechanism may be different between the SaV and RHDV proteases and the NoV and FCV proteases.  相似文献   

11.
HINT1 is a mouse histidine triad nucleotide binding protein. Here we report the assignments for the backbone nitrogen, carbon and proton NMR signals.  相似文献   

12.
Chloride-activated alpha-amylases contain a noncatalytic triad, independent of the glycosidic active site, perfectly mimicking the catalytic triad of serine-proteases and of other active serine hydrolytic enzymes. Mutagenesis of Glu, His, and Ser residues in various alpha-amylases shows that this pattern is a structural determinant of the enzyme conformation that cannot be altered without losing the intrinsic stability of the protein. (1)H-(15)N NMR spectra of a bacterial alpha-amylase reveal proton signals that are identical with the NMR signature of catalytic triads and especially a deshielded proton involving a protonated histidine and displaying properties similar to that of a low barrier hydrogen bond. It is proposed that the H-bond between His and Glu of the noncatalytic triad is an unusually strong interaction, responsible for the observed NMR signal and for the weak stability of the triad mutants. Furthermore, a stringent template-based search of the Protein Data Bank demonstrated that this motif is not restricted to alpha-amylases, but is also found in 80 structures from 33 different proteins, amongst which SH2 domain-containing proteins are the best representatives.  相似文献   

13.
The serine proteases constitute a group of endopeptidases whose members owe their catalytic activity to the presence of a catalytic triad of amino acids consisting of a serine, a histidine and an aspartate. The pK(a) values for this histidine have been determined for several cases in which there is a negative charge installed at the serine to mimic the oxyanionic intermediate and related transition state for the catalytic pathway. Instances from this laboratory include (1) replacement of the serine by a cysteine in subtilisin to create a thiolate; (2) formation of monoisopropylphosphoryl-Ser 195 monoanionic phosphodiesters (in trypsin and chymotrypsin, Ser 221 in subtilisins); and (3) tetrahedral boronates formed with peptide boronic acids. The nuclear magnetic resonance (NMR) signals pertinent to this histidine, or signals indirectly reflecting the state of ionization of this histidine, have been used effectively to monitor changes in the active center ionization state. In every case studied, there is elevation of the pK(a) at the histidine when the negative charge is installed at the serine position. Herein is reported the first NMR measurement of the active center His 63 pK(a) in thiolsubtilisin Carlsberg; it is elevated by 3 units compared with the parent enzyme. Using a numerical solution (finite difference) of the Poisson-Boltzmann equation, a protein dielectric constant of 4 provides a good estimate of the experimentally observed pK(a) elevations. Very significantly, a very low protein dielectric constant (epsilon(p) = 3-5) is required in all of the comparisons, and for all three enzymes used (chymotrypsin, trypsin, and subtilisin). Finally, we discuss why the electrostatic perturbation sensed at His of the active center is more amplified by a negative charge on the Ser side than the same charge on the Asp side. A plausible explanation is that the positive charge on the imidazolium ring of the His is localized, with the N(delta 1) carrying a smaller fraction, the N(epsilon 2) carrying the bulk of the positive charge.  相似文献   

14.
Histidine triad nucleotide binding protein (Hint) is considered as the ancestor of the histidine triad protein superfamily and is highly conserved from bacteria to humans. Prokaryote genomes, including a wide array of both Gram-negative bacteria and Gram-positive bacteria, typically encode one Hint gene. The cellular function of Hint and the rationale for its evolutionary conservation in bacteria have remained a mystery. Despite its ubiquity and high sequence similarity to eukaryote Hint1 [Escherichia coli Hint (echinT) is 48% identical with human Hint1], prokaryote Hint has been reported in only a few studies. Here we report the first conformational information on the full-length N-terminal and C-terminal residues of Hint from the E. coli complex with GMP. Structural analysis of the echinT-GMP complex reveals that it crystallizes in the monoclinic space group P21 with four homodimers in the asymmetric unit. Analysis of electron density for both the N-terminal residues and the C-terminal residues of the echinT-GMP complex indicates that the loops in some monomers can adopt more than one conformation. The observation of conformational flexibility in terminal loop regions could explain the presence of multiple homodimers in the asymmetric unit of this structure. To explore the impact of the echinT C-terminus on protein structure and catalysis, we conducted a series of catalytic radiolabeling and kinetic experiments on the C-terminal deletion mutants of echinT. In this study, we show that sequential deletion of the C-terminus likely has no effect on homodimerization and a modest effect on the secondary structure of echinT. However, we observed a significant impact on the folding structure, as reflected by a significant lowering of the Tm value. Kinetic analysis reveals that the C-terminal deletion mutants are within an order of magnitude less efficient in catalysis compared to wild type, while the overall kinetic mechanism that proceeds through a fast step, followed by a rate-limiting hydrolysis step, was conserved. Nevertheless, the ability of the C-terminal deletion mutants to hydrolyze lysyl-AMP generated by LysU was greatly impaired. Taken together, our results highlight the emerging role of the C-terminus in governing the catalytic function of Hints.  相似文献   

15.
16.
Askari MD  Vo-Dinh T 《Biopolymers》2004,73(4):510-523
The fragile histidine triad (FHIT) tumor suppressor gene incorporates the common human chromosomal fragile site at 3p14.2. The structure and expression of the FHIT gene are frequently altered in many cancers. The tumor suppressor activity of the FHIT gene has been previously demonstrated as potentially involving apoptotic induction. Here, mitochondria are implicated as being involved in the apoptotic activity of the FHIT gene. A number of morphological and biochemical events, including the disruption of the inner mitochondrial transmembrane potential (Delta Psi(m)) and the release of apoptogenic cytochrome c protein into the cytoplasm, are characteristic features of the apoptotic program. The proapoptotic activity of the FHIT gene is studied by investigating the loss of Delta Psi(m) in mitochondria and translocation of cytochrome c. Synchronous luminescence (SL) spectroscopy is applied to measure mitochondrial incorporation of rhodamine 123 for direct analysis of alterations in the mitochondrial Delta Psi(m). The SL methodology is based on synchronous excitation in which the excitation and emission wavelengths are scanned simultaneously while a constant wavelength interval is maintained between the excitation and emission monochromators. An enhanced collapse of Delta Psi(m) in apoptotically induced FHIT expressing cells compared to FHIT negative cells is observed. The loss of Delta Psi(m) is greatly restricted in the presence of the apoptotic inhibitor, cyclosporin A. Cytoplasmic translocation of cytochrome c in the FHIT expressing cells as an early event in apoptosis is also demonstrated. It is concluded that Fhit protein expression maintained apoptotic function by altering the Delta Psi(m) and by enhancing cytochrome c efflux from the mitochondria.  相似文献   

17.
Human fragile histidine triad (FHIT) protein has dinucleoside 5,5-P1,Pn-polyphosphates hydrolysis activity, with AMP being one of the reaction products. Application of synchronous luminescence (SL) spectroscopy, in which both excitation and emission wavelengths are scanned simultaneously while a constant wavelength interval is maintained between them, was investigated for detection of the enzymatic activity of the FHIT protein. Ability of SL to identify reaction components, AMP production and its increase as a result of increase in substrate concentration and inhibition of the hydrolysis activity by ZnCl2 are demonstrated.  相似文献   

18.
Eukaryotic cells encode AMP-lysine (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester) 5'-phosphoramidate) hydrolases related to the rabbit histidine triad nucleotide-binding protein 1 (Hint1) sequence. Bacterial and archaeal cells have Hint homologs annotated in a variety of ways, but the enzymes have not been characterized, nor have phenotypes been described due to loss of enzymatic activity. We developed a quantitative (31)P NMR assay to determine whether Escherichia coli possesses an adenosine phosphoramidase activity. Indeed, soluble lysates prepared from wild-type laboratory E. coli exhibited activity on the model substrate adenosine 5'-monophosphoramidate (AMP-NH(2)). The E. coli Hint homolog, which had been comprehensively designated ycfF and is here named hinT, was cloned, overexpressed, purified, and characterized with respect to purine nucleoside phosphoramidate substrates. Bacterial hinT was several times more active than human or rabbit Hint1 on five model substrates. In addition, bacterial and mammalian enzymes preferred guanosine versus adenosine phosphoramidates as substrates. Analysis of the lysates from a constructed hinT knock-out strain of E. coli demonstrated that all of the cellular purine nucleoside phosphoramidase activity is due to hinT. Physiological analysis of this mutant revealed that the loss of hinT results in failure to grow in media containing 0.75 m KCl, 0.9 m NaCl, 0.5 m NaOAc, or 10 mm MnCl(2). Thus, cation-resistant bacterial cell growth may be dependent on the hydrolysis of adenylylated and/or guanylylated phosphoramidate substrates by hinT.  相似文献   

19.
Hint, histidine triad nucleotide-binding protein, is a universally conserved enzyme that hydrolyzes AMP linked to lysine and, in yeast, functions as a positive regulator of the RNA polymerase II C-terminal domain kinase, Kin28. To explore the biochemical and structural bases for the adenosine phosphoramidate hydrolase activity of rabbit Hint, we synthesized novel substrates linking a p-nitroaniline group to adenylate (AMP-pNA) and inhibitors that consist of an adenosine group and 5'-sulfamoyl (AdoOSO(2)NH(2)) or N-ethylsulfamoyl (AdoOSO(2)NHCH(2)CH(3)) group. AMP-pNA is a suitable substrate for Hint that allowed characterization of the inhibitors; titration of each inhibitor into AMP-pNA assays revealed their K(i) values. The N-ethylsulfamoyl derivative has a 13-fold binding advantage over the sulfamoyl adenosine. The 1.8-A cocrystal structure of rabbit Hint with N-ethylsulfamoyl adenosine revealed a binding site for the ethyl group against Trp-123, a residue that reaches across the Hint dimer interface to interact with the alkyl portion of the inhibitor and, presumably, the alkyl portion of a lysyl substrate. Ser-107 is positioned to donate a hydrogen bond to the leaving group nitrogen. Consistent with a role in acid-base catalysis, the Hint S107A mutant protein displayed depressed catalytic activity.  相似文献   

20.
BackgroundOne of the activities of histidine triad nucleotide-binding protein 1 (Hint1) under in vitro conditions is the conversion of nucleoside 5′-O-phosphorothioate (NMPS) to its 5′-O-phosphate (NMP), which is accompanied by the release of hydrogen sulfide.MethodsNon-hydrolyzable derivatives of AMPS and dCMPS, each containing the residue able to form a covalent bond in nucleic acid–protein complexes via photocrosslinking (at 308 nm), were applied at the complexing experiments with recombinant and cellular Hint1.The cellular lysates prepared after RNAi-mediated knockdown of Hint1 were incubated with AMPS and the level of desulfuration was measured.ResultsRecombinant Hint1 and Hint1 present in the cellular lysate of A549 cells, formed complexes with the used substrate analogs.Computer modeling experiments, in which the ligand was docked at the binding pocket, confirmed that direct interactions between Hint1 and the screened analogs are possible.Using RNAi technology, we demonstrated lowered levels of AMPS substrate desulfuration in reactions that employed the cell lysates with a reduced Hint1 level.ConclusionsThe enzymatic conversion of AMPS to AMP occurred with the participation of cellular Hint1, the protein, which is present in all organisms.General significanceThe intracellular Hint1 could be responsible for the in vivo desulfuration of nucleosides-5′-monophosphorothioate, thus it can contribute to the phosphorothioate oligonucleotides metabolism. H2S released during this process may participate in several physiological processes, thus NMPSs can be precursors/donors of H2S in vivo and can be used to study the effects of this gas in biological systems. Moreover, the controlled delivery of (d)NMPSs into cells may be of medicinal utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号