首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Anatomically separate fat depots differ in size, function, and contribution to pathological states, such as the metabolic syndrome. We isolated preadipocytes from different human fat depots to determine whether the basis for this variation is partly attributable to differences in inherent properties of fat cell progenitors. We found that genome-wide expression profiles of primary preadipocytes cultured in parallel from abdominal subcutaneous, mesenteric, and omental fat depots were distinct. Interestingly, visceral fat was not homogeneous. Preadipocytes from one of the two main visceral depots, mesenteric fat, had an expression profile closer to that of subcutaneous than omental preadipocytes, the other main visceral depot. Expression of genes that regulate early development, including homeotic genes, differed extensively among undifferentiated preadipocytes isolated from different fat depots. These profiles were confirmed by real-time PCR analysis of preadipocytes from additional lean and obese male and female subjects. We made preadipocyte strains from single abdominal subcutaneous and omental preadipocytes by expressing telomerase. Depot-specific developmental gene expression profiles persisted for 40 population doublings in these strains. Thus, human fat cell progenitors from different regions are effectively distinct, consistent with different fat depots being separate mini-organs.  相似文献   

2.
3.
To determine whether the characteristics of preadipocytes derived from human fat are uniform or variable, we developed methods for culturing and differentiating cloned human preadipocytes. Individual human omental preadipocytes were cultured for six weeks. The number of cells varied considerably among clones derived from the same subject, implying that human preadipocytes vary in replicative capacity. Indeed, two cell subtypes were found in human omental fat; one type replicated slowly and the other was capable of extensive replication. Cells of both subtypes were capable of differentiation into adipocytes, confirming that both subtypes were preadipocytes. When rat perirenal and epididymal preadipocytes were cloned, a slowly replicating and an extensively replicating preadipocyte subtype were also found. It is proposed that preadipocytes of the rapidly and the slowly replicating subtypes may be at different stages along the pathway between uncommitted precursor cells and differentiated adipocytes.  相似文献   

4.
To understand the significance of the reported depot differences in preadipocyte dynamics, we developed a procedure to identify committed preadipocytes in the stromovascular fraction of fresh human adipose tissue. We documented that adipocyte fatty acid binding protein (aP2) is expressed in human preadipocyte clones capable of replication, indicating that can be used as a marker of committed preadipocytes. Because aP2 expression can be induced in macrophages, stromovascular cells were also stained for the macrophage marker CD68. We found aP2+CD68- cells (designated as committed preadipocytes) that did not have lipid droplets (true preadipocytes) and that did have lipid droplets < 6.5 microm in diameter (very immature adipocytes). Adipose tissue from subcutaneous, omental, and mesenteric depots was obtained from nine patients undergoing bariatric surgery for measurement of stromovascular cell number, the number of committed preadipocytes (aP2+CD68-), aP2+ macrophages (aP2+CD68+), and aP2- macrophages (aP2-CD68+). The number of committed preadipocytes did not differ significantly between depots but varied >20-fold among individuals. Total cell number, stromovascular cell number, and the number of aP2- macrophages was less (P < 0.05) in subcutaneous than in omental fat (means +/- SE, in millions: subcutaneous, 2.3 +/- 0.3, 1.4 +/- 0.3, and 0.17 +/- 0.08; and omental, 4.8 +/- 0.7, 3.8 +/- 0.5, and 0.34 +/- 0.06); mesenteric depot was intermediate. These data indicate that the cellular composition of adipose tissue varies between depots and between individuals. The ability to quantify committed preadipocytes in fresh adipose tissue should facilitate study of adipose tissue biology.  相似文献   

5.
Regional differences in free fatty acid (FFA) handling contribute to diseases associated with particular fat distributions. As cultured rat preadipocytes became differentiated, FFA transfer into preadipocytes increased and was more rapid in single perirenal than in epididymal cells matched for lipid content. Uptake by human omental preadipocytes was greater than uptake by abdominal subcutaneous preadipocytes. Adipose-specific fatty acid binding protein (aP2) and keratinocyte lipid binding protein abundance was higher in differentiated rat perirenal than in epididymal preadipocytes. This interdepot difference in preadipocyte aP2 expression was reflected in fat tissue in older animals. Carnitine palmitoyltransferase 1 activity increased during differentiation and was higher in perirenal than in epididymal preadipocytes, particularly the muscle isoform. Long-chain acyl-CoA levels were higher in perirenal than in epididymal preadipocytes and isolated fat cells. These data are consistent with interdepot differences in fatty acid flux ensuing from differences in fatty acid binding proteins and enzymes of fat metabolism. Heterogeneity among depots results, in part, from distinct intrinsic characteristics of adipose cells. Different depots are effectively separate miniorgans.  相似文献   

6.
Given the substantial rise in obesity, depot-specific fat accumulation and its associated diseases like diabetes, it is important to understand the molecular basis of depot-specific adipocyte differentiation. Many studies have successfully exploited the adipocyte differentiation, but most of them were not related to depot-specificity, particularly using freshly isolated primary preadipocytes. Using 2-dimensional polyacrylamide gel electrophoresis coupled with sequencing mass spectrometry, we searched and compared the proteins differentially expressed in undifferentiated and differentiated preadipocytes from bovine omental, subcutaneous and intramuscular adipose depots. Our proteome mapping strategy to identify differentially expressed intracellular proteins during adipogenic conversion revealed 65 different proteins that were found to be common for the three depots. Further, we validated the differential expression for a subset of proteins by immunoblotting analyses. The results demonstrated that many structural proteins were down-regulated during differentiation of preadipocytes from all the depots. Most up-regulated proteins like Ubiquinol–cytochrome-c reductase complex core protein I (UQCRC1), ATP synthase D chain, Superoxide dismutase (SOD), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Sulfotransferase 1A1 (SULT1A1), Carnitine O-palmitoyltransferase 2 (CPT2) and Heat-shock protein beta 1 (HSPB1) across the three depots were found to be associated with lipid metabolism and metabolic activity. Further, all the up-regulated proteins were found to have higher protein expression in omental than subcutaneous or intramuscular depots.  相似文献   

7.
Intraabdominal fat in humans is located in two major depots, the omental and mesenteric. We compared basal and stimulated lipolysis in adipose tissue from these two depots and the subcutaneous abdominal depot of obese women and men. Omental fat cells of women are smaller and have lower rates of basal lipolysis than in men. Basal Iipolysis rates are significantly higher in subcutaneous than intraabdominal adipose tissues of both genders. In men, the incremental lipolytic response to norepinephrine is significantly greater in both intraabdominal fat depots than in the subcutaneous fat, while in women tlie response of tlie mesenteric is lower than tlie omental. In women, but not men, responsiveness to tlie beta agonist isoproterenol is also increased in omental tissue. Thus, in women, omental and mesenteric adipose tissues show distinctly different metabolic properties which may moderate the impact of intraabdominal obesity.  相似文献   

8.
Adipogenesis is preceded by development of a microvascular network, and optimal functioning of adipose tissue as an energy store and endocrine organ is dependent on extensive vascularization. We have examined the role of endothelial cell-derived factors that influence the proliferation of human preadipocytes. Microvascular endothelial cells and preadipocytes were isolated from human omental and subcutaneous adipose tissue biopsies by use of a developed procedure of collagenase digest, immunoselection, and differential trypsinization. Conditioned medium from microvascular endothelial cell cultures promoted the proliferation of preadipocytes (P = <0.001) and (to a lesser extent) other cell types. No depot-specific differences in mitogenic capacity of microvascular endothelial cell medium or of preadipocyte response were observed. These results indicate that adipose tissue endothelial cells secrete soluble adipogenic factor(s).  相似文献   

9.
Recently a role of adipose tissue as an endocrine organ secreting factors involved in the regulation of whole-body energy homeostasis has emerged. Preadipocytes in different fat depots have distinct adipogenic potential and the metabolic activity differs between mature adipocytes of different depot origins. Here we describe the proliferation and differentiation of stromal-vascular cells derived from subcutaneous and visceral fat depots of adult pigs. We demonstrate that subcutaneous porcine preadipocytes proliferate more actively and that individual subcutaneous adipocytes have a more rapid accumulation of triacylglycerols than visceral cells. During differentiation, subcutaneous and visceral preadipocytes showed similar gene expression patterns with increased expression of adiponectin (APM1), adipocyte-specific fatty acid binding protein (FABP4), catalase (CAT), and peroxisome proliferator-activated receptor gamma 2 (PPARG2). Furthermore, initial data showing depot-originated effects on the expression of CAT, carnitine palmitoyl transferase 1B (CPT1B) and FABP4 suggest possible depot specific differences in the function and metabolism of mature porcine adipocytes.  相似文献   

10.
Objective: To determine the variation in preadipocyte isolation procedure and to assess the number and function of preadipocytes from subcutaneous and omental adipose tissue of obese individuals. Research Methods and Procedures: The preadipocyte number per gram of adipose tissue in the abdominal‐subcutaneous and abdominal‐omental adipose stores of 27 obese subjects with a BMI of 44 ± 10 kg/m2 and an age of 40 ± 9 years was determined. Results: The assessment of the preadipocyte number was found to be labor intensive and error prone. Our data indicated that the number of stromal vascular cells (SVCs), isolated from the adipose tissue by collagenase digestion, was dependent on the duration of collagenase treatment and the size and the origin of the biopsy. In addition, the fat accumulation and leptin production by differentiated SVCs were dependent on the number of adherent SVCs (aSVCs) in the culture plate and the presence of proteins derived from serum and peroxisome proliferator‐activated receptor ligands. Discussion: Using our standardized isolation and differentiation protocol, we found that the number of SVCs, aSVCs, leptin production, and fat accumulation still varied considerably among individuals. Interestingly, within individuals, the number of SVCs, aSVCs, and the leptin production by differentiating aSVCs from both the subcutaneous and the omental fat depots were associated, whereas fat accumulation was not. In obese to severely obese subjects, differences in BMI and age could not explain differences in SVCs, aSVCs, leptin production, and fat accumulation.  相似文献   

11.
Progress has been made in elucidating the cell-surface phenotype of primary adipose progenitors; however, specific functional markers and distinct molecular signatures of fat depot-specific preadipocytes have remained elusive. In this study, we label committed murine adipose progenitors through expression of GFP from the genetic locus for Zfp423, a gene controlling preadipocyte determination. Selection of GFP-expressing fibroblasts from either subcutaneous or visceral adipose-derived stromal vascular cultures isolates stably committed preadipocytes that undergo robust adipogenesis. Immunohistochemistry for Zfp423-driven GFP expression in?vivo confirms a perivascular origin of preadipocytes within both white and brown adipose tissues. Interestingly, a small subset of capillary endothelial cells within white and brown fat also express this marker, suggesting a contribution of specialized endothelial cells to the adipose lineage. Zfp423(GFP) mice represent a simple tool for the specific localization and isolation of molecularly defined preadipocytes from distinct adipose tissue depots.  相似文献   

12.
Adipogenesis and lipid storage in human adipose tissue are inhibited by androgens such as DHT. Inactivation of DHT to 3α-diol is stimulated by glucocorticoids in human preadipocytes. We sought to characterize glucocorticoid-induced androgen inactivation in human preadipocytes and to establish its role in the antiadipogenic action of DHT. Subcutaneous and omental primary preadipocyte cultures were established from fat samples obtained in subjects undergoing abdominal surgeries. Inactivation of DHT to 3α/β-diol for 24 h was measured in dexamethasone- or vehicle-treated cells. Specific downregulation of aldo-keto reductase 1C (AKR1C) enzymes in human preadipocytes was achieved using RNA interference. In whole adipose tissue sample, cortisol production was positively correlated with androgen inactivation in both subcutaneous and omental adipose tissue (P < 0.05). Maximal dexamethasone (1 μM) stimulation of DHT inactivation was higher in omental compared with subcutaneous fat from men as well as subcutaneous and omental fat from women (P < 0.05). A significant positive correlation was observed between BMI and maximal dexamethasone-induced DHT inactivation rates in subcutaneous and omental adipose tissue of men and women (r = 0.24, n = 26, P < 0.01). siRNA-induced downregulation of AKR1C2, but not AKR1C1 or AKR1C3, significantly reduced basal and glucocorticoid-induced androgen inactivation rates (P < 0.05). The inhibitory action of DHT on preadipocyte differentiation was potentiated following AKR1C2 but not AKR1C1 or AKR1C3 downregulation. Specifically, lipid accumulation, G3PDH activity, and FABP4 mRNA expression in differentiated preadipocytes exposed to DHT were reduced further upon AKR1C2 siRNA transfection. We conclude that glucocorticoid-induced androgen inactivation is mediated by AKR1C2 and is particularly effective in omental preadipocytes of obese men. The interplay between glucocorticoids and AKR1C2-dependent androgen inactivation may locally modulate adipogenesis and lipid accumulation in a depot-specific manner.  相似文献   

13.
14.
15.
Adipose tissue expansion involves the enlargement of existing adipocytes, the formation of new cells from committed preadipocytes, and the coordinated development of the tissue vascular network. Here we find that murine endothelial cells (ECs) of classic white and brown fat depots share ultrastructural characteristics with pericytes, which are pluripotent and can potentially give rise to preadipocytes. Lineage tracing experiments using the VE-cadherin promoter reveal localization of reporter genes in ECs and also in preadipocytes and adipocytes of white and brown fat depots. Furthermore, capillary sprouts from human adipose tissue, which have predominantly EC characteristics, are found to express Zfp423, a recently identified marker of preadipocyte determination. In response to PPARγ activation, endothelial characteristics of sprouting cells are progressively lost, and cells form structurally and biochemically defined adipocytes. Together these data support an endothelial origin of murine and human adipocytes, suggesting a model for how adipogenesis and angiogenesis are coordinated during adipose tissue expansion.  相似文献   

16.
Adipose cells are extrathyroidal targets of thyroid-stimulating hormone (TSH). TSH stimulates interleukin-6 (IL-6) release from adipocytes. We examined TSH responsiveness as a function of stage of differentiation or adipose tissue depot in cultured adipose cells and determined the effect of TSH on extrathyroidal IL-6 production in vivo. Stromal preadipocytes, isolated from human abdominal subcutaneous or omental adipose tissue, and their differentiated counterparts were studied. IL-6 protein concentration in the medium was measured after TSH stimulation. Basal IL-6 release was greater for preadipocytes than differentiated adipocytes, whether derived from subcutaneous or omental fat depots. A depot-dependent effect (omental > subcutaneous) on basal IL-6 release was observed for preadipocytes (1.6-fold, P < 0.05); a similar trend for differentiated adipocytes was not significant (6.2-fold, P > 0.05). IL-6 responsiveness to TSH was observed upon differentiation, but only for subcutaneous adipocytes (1.9-fold over basal, P < 0.001). To determine if TSH could stimulate IL-6 release from extrathyroidal tissues in vivo, we measured serum IL-6 levels from five thyroidectomized patients who received recombinant human (rh) TSH and found that levels increased by threefold on days 3 and 4 (P < 0.05) after its administration. Our data demonstrate that stage of differentiation and fat depot origin affect basal and TSH-stimulated IL-6 release from adipose cells in culture. Furthermore, rhTSH elevates serum IL-6 response in thyroidectomized patients, indicating an extrathyroidal site of TSH action.  相似文献   

17.
In humans, oxoreducing 11beta-HSD-1 activity appears to be related to body fat distribution in male-type central obesity, but not in female-type peripheral obesity. We postulated that inhibition of 11beta-HSD-1 might have clinical therapeutic significance in oxoreducing mostly visceral fat and its metabolic activity. Our current study investigated the consequence at the cellular level of such inhibition. As an inhibitor of 11beta-HSD-1 activity, we used the licorice derivative carbenoxolone. Carbenoxolone has an inhibitory effect on the activity of both oxidizing 11beta-HSD-2, which converts cortisol to cortisone, and oxoreducing 11beta-HSD-1; yet, preadipocytes and adipocytes only express the latter. Preadipocytes were retrieved from omental and subcutaneous fat from healthy non-obese individuals and differentiated in vitro to mature adipocytes. Activity of 11beta-HSD-1 was assayed by measuring conversion of added 500 nM cortisone to cortisol. Expression of 11beta-HSD-1 mRNA was determined by real-time PCR, while lipolytic effects were determined by measuring glycerol and triglyceride concentration in the culture medium. Carbenoxolone decreased 11beta-HSD-1 activity in a dose-dependent manner with an IC-50 of 5X10 -6 M, but did not affect the expression of 11beta-HSD-1 mRNA. Cortisone stimulated subcutaneous, but not omental preadipocytes proliferation, an effect that was not abolished by carbenoxolone. Dexamethasone had a stimulatory effect on the maturation of both omental and subcutaneous preadipocytes. Carbenoxolone per se, either with or without cortisone, had a negative effect on preadipocyte maturation. Inhibiting 11beta-HSD-1 activity by carbenoxolone had no impact on leptin secretion. Thus, carbenoxolone has no effect on preadipocyte proliferation, but a dramatic inhibitory effect on preadipocyte differentiation into mature adipocytes. The mechanism is only partly related to its inhibitory effect on 11beta-HSD-1 activity. The present observations lend support to the presence of an intracrine loop of a hormone that is both produced from a precursor and active within the preadipocyte and adipocyte.  相似文献   

18.
Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a gatekeeper of adipogenesis by maintaining the preadipocyte state and preventing adipocyte differentiation. We hypothesized that the breed differences of adipogenic capacity in cattle could be explained by the expression level of pref-1. In this experiment, we studied the expression level of the pref-1 gene and adipocyte cellularity in subcutaneous and mesenteric adipose tissues of Japanese Black (Wagyu) and Holstein fattening cattle. In subcutaneous adipose tissue, there were no significant differences in the pref-1 gene expression levels and adipocyte sizes between the breeds. In contrast, the expression level of the pref-1 gene in mesenteric adipose tissue of Holsteins was significantly higher than that of Wagyu. In addition, the size of mesenteric adipocytes in Holsteins was significantly smaller than that of Wagyu. These results indicate that the breed differences of fattening cattle affect the expression pattern of the pref-1 gene and adipocyte cellularity in a fat depot-specific manner.  相似文献   

19.
Summary Insulinlike growth factor-1 (IGF-1) is both adipogenic and mitogenic to preadipose cell lines as well as primary stromal-vascular (SV) cells. The precise effect of IGF-1 on primary preadipocytes per se, however, has not been elucidated directly. In this study, primary porcine preadipocytes were exposed to IGF-1 while at three culture densities. The proportion of replicating preadipocytes was determined by labeling cells with an antiadipocyte/preadipocyte monoclonal antibody (MAb) concomitant with DNA measurement with propidium iodide. Flow cytometric analysis revealed that different seeding densities did not affect the relative proportion of preadipocytes (AD-1 positive) in cultures. However, IGF-1 treatment increased the proportion of preadipocytes at all densities but to a greater extent in more dense cultures. The resultant number of fat cell clusters formed was greater at higher densities and on IGF-1 treatment. The proportion of replicating cells in cultures decreased with increasing density. IGF-1 significantly increased replication at all densities and increased the number of replicating preadipocytes to the same extent independent of density. These results provide direct evidence of hormonal regulation of primary preadipocyte replication. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

20.
The mouse lipin gene, Lpin1, is important for adipose tissue development and is a candidate gene for insulin resistance. Here, we investigate the adipose tissue expression levels of the human LPIN1 gene in relation to various clinical variables as well as adipocyte function. LPIN1 gene expression was induced at an early step in human preadipocyte differentiation in parallel with peroxisome proliferator-activated receptor gamma. Lipin mRNA levels were higher in fat cells than in adipose tissue segments but showed no difference between subcutaneous and omental depots. Moreover, LPIN1 expression levels were reduced in obesity, improved following weight reduction in obese subjects, and were downregulated in women with the metabolic syndrome. With respect to adipocyte function, adipose LPIN1 gene expression was strongly associated with both basal and insulin-mediated subcutaneous adipocyte glucose transport as well as mRNA levels of glucose transporter 4 (GLUT4). We show that body fat accumulation is a major regulator of human adipose LPIN1 expression and suggest a role of LPIN1 in human preadipocyte as well as mature adipocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号