首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Profilin purified from human platelets formed a 1:1 molar ratio complex with rabbit skeletal muscle G-actin but was displaced by purified serum Gc (vitamin D binding protein) in a dose-dependent fashion as assessed by chromatography and ultrafiltration. This suggested that Gc and profilin competed for the same binding area on G-actin, with Gc-G-actin complexes being more stable than profilin-G-actin complexes in vitro. The binding domain for Gc on G-actin was localized to a 16,000-Da C-terminal fragment of G-actin generated by Staphylococcus aureus V8 protease, as judged by comigration on two-dimensional electrophoresis and also by overlaying electrophoresis gels with 125I-Gc. Previous studies have reported that residues 374 and 375 of G-actin are essential for binding of profilin. In this study, experiments involving tryptic removal of Cys-374 labeled with the fluorescent probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)-ethylenediamine showed that these C-terminal amino acids were not necessary for interaction with Gc.  相似文献   

2.
3.
4.
One of the most active areas of neurobiology research concerns mechanisms involved in paradigms of synaptic plasticity. A popular model for cellular leaning and memory is long term potentiation (LTP) in hippocamus. LTP requires postsynaptic influx of Ca2+ which triggers multiple biochemical pathways resulting in pre- and postsynaptic mechanisms enhancing long term synaptic efficiency. This article focuses on an acute postsynaptic Mechanism that can enhance responsiveness of glutamate receptors. Evidence is presented that calcium/calmodulin/dependent protein kinase II, the major potsynaptic density protein at excitatory glutaminergic synapses, can phosphorylate glutamate receptors and enhance ion current flowing through them. 1994 John Wiley & Sons, Inc.  相似文献   

5.
6.
7.
8.
9.
Ecdysteroids coordinate essential biological processes in Drosophila through a complex of two nuclear receptors, the ecdysteroid receptor (EcR) and the ultraspiracle protein (Usp). Biochemical experiments have shown that, in contrast to Usp, the EcR molecule is characterized by high intramolecular plasticity. To investigate whether this plasticity is sufficient to form EcR complexes with nuclear receptors other than Usp, we studied the interaction of EcR with the DHR38 nuclear receptor. Previous in vitro experiments suggested that DHR38 can form complexes with Usp and thus disrupt Usp-EcR interaction with the specific hsp27pal response element. This article provides the experimental evidence that EcR is able to form complexes with DHR38 as well. The recombinant DNA-binding domains (DBDs) of EcR and DHR38 interact specifically on hsp27pal. However, the interaction between the receptors is not restricted to their isolated DBDs. We pre\xadsent data that indicate that the full-length EcR and DHR38 can also form specific complexes within the nuclei of living cells. This interaction is mediated by the hinge region of EcR, which was recently classified as an intrinsically disordered region. Our results indicate that DHR38 might modulate the activity of the Usp-EcR heterodimer by forming complexes with both of its components.  相似文献   

10.
11.
12.
Vitamin D deficiency and advanced glycation end products (AGEs) are suggested to be involved in the pathogenesis of osteoporosis and sarcopenia. However, the effects of vitamin D and AGEs on myogenesis and the interaction between muscle and bone remains still unclear. We previously showed that osteoglycin (OGN) is secreted from myoblasts and stimulates osteoblastic differentiation, suggesting that it plays important roles in the interaction between muscle and bone. The aim of this study is thus to examine the effects of vitamin D and AGEs on myoblastic differentiation of C2C12 cells and osteoblastic differentiation of osteoblastic MC3T3-E1 cells through OGN expression. 1α,25-dihydroxyvitamin D3 (1,25D) and eldecalcitol, an active vitamin D analog, induced the expression of MyoD, myogenin and OGN, and these effects were abolished by vitamin D receptor (VDR) suppression by siRNA in C2C12 cells. Moreover, conditioned medium from 1,25D-pretreated C2C12 cells stimulated the expression of type 1 collagen and alkaline phosphatase in MC3T3-E1 cells, compared to control medium from 1,25D-untreated C2C12 cells. In contrast, conditioned medium from VDR-suppressed and 1,25D-pretreated C2C12 cells showed no effects. AGE2 and AGE3 suppressed the expression of MyoD, myogenin and OGN in C2C12 cells. Moreover, 1,25D blunted the AGEs’ effects. In conclusion, these findings showed for the first time that active vitamin D plays important roles in myogenesis and muscle-induced osteoblastogenesis through OGN expression. Active vitamin D treatment may rescue the AGEs-induced sarcopenia as well as – suppressed osteoblastic differentiation via OGN expression in myoblasts.  相似文献   

13.
The interaction of fatty acids with bovine vitamin D-binding protein (DBP) was studied using a partition equilibrium method. This protein has one high affinity site for binding of fatty acids with an association constant Ka = 7 x 10(5) M-1 for palmitic acid and Ka = 6 x 10(5) M-1 for arachidonic acid. Competition experiments showed that palmitic acid hardly competes with 25-hydroxycholecalciferol for binding to DBP. However, arachidonic acid showed comparatively a stronger competition for binding to this protein. The great difference in competition of palmitic and arachidonic acids with 25-hydroxycholecalciferol may be related to changes in DBP conformation promoted by the binding of different ligands.  相似文献   

14.
15.
Calreticulin (CRT), a major Ca2+-sequestering protein, has beenimplicated in a variety of cellular functions such as Ca2+ storage,signaling and chaperone activity within the cytoplasm and endoplasmicreticulum. To investigate the biological role of CRT in rice,21 partial cDNAs, encoding proteins that interacted with riceCRT in a yeast two-hybrid interaction-cloning system, were characterizedand the nucleotide sequences were found to be identical to eachother. A full-length cDNA of 3.5 kb, obtained from ricegenomic sequence data and 5' RACE, codes for a novel proteinof 966 amino acid residues and was designated as CRTintP (CRTinteracting protein). Primary sequence analysis of CRTintP showedno sequence homology with the known functional proteins; however,a potential ubiquitin-like domain at the N-terminal togetherwith a putative leucine zipper, a nuclear localization signaland several sites for serine/threonine kinases were evident.Cellular localization of CRTintP demonstrated its role in directinggreen fluorescent protein to the nucleus in onion epidermalcells. Northern and immunoblot analysis showed increased expressionof CRT and CRTintP in response to cold stress. Co-immunoprecipitationusing anti-CRT antibodies confirmed the existence of the CRT-CRTintPcomplex in vivo in the stressed leaf tissue, suggesting theirpotential role in regulating stress response. 4 Corresponding author: E-mail, skomatsu{at}affrc.go.jp; Fax, +81-298-38-7464.  相似文献   

16.
Changeux et al. (Changeux et al. C. R. Biol. 343:33–39.) recently suggested that the SARS-CoV-2 spike protein may interact with nicotinic acetylcholine receptors (nAChRs) and that such interactions may be involved in pathology and infectivity. This hypothesis is based on the fact that the SARS-CoV-2 spike protein contains a sequence motif similar to known nAChR antagonists. Here, we use molecular simulations of validated atomically detailed structures of nAChRs and of the spike to investigate the possible binding of the Y674-R685 region of the spike to nAChRs. We examine the binding of the Y674-R685 loop to three nAChRs, namely the human α4β2 and α7 subtypes and the muscle-like αβγδ receptor from Tetronarce californica. Our results predict that Y674-R685 has affinity for nAChRs. The region of the spike responsible for binding contains a PRRA motif, a four-residue insertion not found in other SARS-like coronaviruses. The conformational behavior of the bound Y674-R685 is highly dependent on the receptor subtype; it adopts extended conformations in the α4β2 and α7 complexes but is more compact when bound to the muscle-like receptor. In the α4β2 and αβγδ complexes, the interaction of Y674-R685 with the receptors forces the loop C region to adopt an open conformation, similar to other known nAChR antagonists. In contrast, in the α7 complex, Y674-R685 penetrates deeply into the binding pocket in which it forms interactions with the residues lining the aromatic box, namely with TrpB, TyrC1, and TyrC2. Estimates of binding energy suggest that Y674-R685 forms stable complexes with all three nAChR subtypes. Analyses of simulations of the glycosylated spike show that the Y674-R685 region is accessible for binding. We suggest a potential binding orientation of the spike protein with nAChRs, in which they are in a nonparallel arrangement to one another.  相似文献   

17.
We present a prior-based profile method for the prediction of protein-protein interaction partners that is here applied to the nuclear receptor superfamily. In this method, the diagnostic features are locally encoded in the physicochemical properties of residues in the interaction surface that are conserved in all proteins belonging to the defining set. The procedure models the positional variation based on that observed in the defining set and a prior-based substitution matrix derived from over 20,000 highly conserved positions in a set of 147 functional protein families. The method clusters sets of nuclear receptors known to interact with retinoid X receptor or corepressor proteins with predictive sets of receptors in C. elegans and higher metazoans. The method effectively reduces the search space of all possible interactions and yields experimentally testable predictions. Applications of this novel approach extend to interaction prediction problems in general, particularly to those that are not amenable to analysis by the rigid-body approximation.  相似文献   

18.
19.
20.
Vitamin K deficiency in rats caused a rise of in vivo occupied 1,25(OH)2D3 receptor level in chromatin of the intestinal mucosa and a marked (2-2.5-fold) increase of intestinal cytosolic 1,25(OH)2D3-receptor complex binding with heterologous DNA, whereas maximum binding capacity and equilibrium dissociation constant of cytosolic 1,25 (OH)2D3 receptors did not change. Preincubation of renal and intestinal cytosol of vitamin K-deficient rats with microsomal vitamin K-dependent gamma-carboxylating system reduced sharply 1,25(OH)2D3-receptor complex binding with DNA. In rats treated by vitamin K antagonist along with a low calcium diet, no dramatic decrease of occupied 1,25(OH)2D3 receptors occurred after the animals were maintained with a high calcium diet. No such effect was observed in vitamin K-replete rats. The data demonstrate vitamin K-dependent Ca-sensitive qualitative modification of 1,25(OH)2D3 receptor dropping its binding performance to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号