首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The hydrophobic, photoreactive probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl) diazirine ([125I]TID) labels apo-bovine alpha-lactalbumin but much less his Ca2+-form. The labeling of the apo-form is strong at protein concentrations of 0.5 mg ml-1 and increases with increasing concentration. Furthermore, increasing concentrations of NaCl, decrease the labeling of apo-alpha-lactalbumin with [125I]TID.  相似文献   

2.
M P Blanton  J B Cohen 《Biochemistry》1992,31(15):3738-3750
To identify regions of the Torpedo nicotinic acetylcholine receptor (AchR) interacting with membrane lipid, we have used 1-azidopyrene (1-AP) as a fluorescent, photoactivatable hydrophobic probe. For AchR-rich membranes equilibrated with 1-AP, irradiation at 365 nm resulted in covalent incorporation in all four AchR subunits with each of the subunits incorporating approximately equal amounts of label. To identify the regions of the AchR subunits that incorporated 1-AP, subunits were digested with Staphylococcus aureus V8 protease and trypsin, and the resulting fragments were separated by SDS-PAGE followed by reverse-phase high-performance liquid chromatography. N-terminal sequence analysis identified the hydrophobic segments M1, M3, and M4 within each subunit as containing the sites of labeling. The labeling pattern of 1-AP in the alpha-subunit was compared with that of another hydrophobic photoactivatable probe, 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID). The nonspecific component of [125I]TID labeling [White, B., Howard, S., Cohen, S. G., & Cohen, J.B. (1991) J. Biol. Chem. 266, 21595-21607] was restricted to the same regions as those labeled by 1-AP. The [125I]TID residues labeled in the hydrophobic segment M4 were identified as Cys-412, Met-415, Cys-418, Thr-422, and Val-425. The periodicity and distribution of labeled residues establish that the M4 region is alpha-helical in nature and indicate that M4 presents a broad face to membrane lipid.  相似文献   

3.
All four subunits of the acetylcholine receptor (AChR) are labeled by the lipid-soluble photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) with different stoichiometries and levels of saturable modification sites, dependent on the conformational state of the AChR. This probe is specific for hydrophobic targets such as the membrane-spanning regions of intrinsic proteins. In the resting state, the gamma subunit is labeled 4.5 times greater and the beta and delta subunits 1.65-1.69 greater than the alpha subunit. Carbamylcholine-induced desensitization of the AChR lowers the level and alters the stoichiometry of [125I]TID incorporation into each subunit. This effect is shown to be specific in two ways. First, it is eliminated by prior equilibration with excess alpha-bungarotoxin, which does not change the [125I]TID-labeling pattern of the AChR from that of the resting state. Second, bacteriorhodopsin is labeled by [125I]TID to the same extent both in the presence and absence of carbamylcholine. The noncompetitive blocker phencyclidine does not alter [125I]TID labeling of the AChR relative to the resting state. The 43-kDa protein, which is believed to cross-link the AChR to the cytoskeleton at the synapse, is not modified by [125I]TID, in agreement with earlier conclusions that the 43-kDa protein is not an intrinsic membrane protein.  相似文献   

4.
The hydrophobic, photoactivatable probe TID [3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine] was used to label the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The H(+)-ATPase accounted for 43% of the total label associated with plasma membrane protein and incorporated 0.3 mol of [125I]TID per mol of 100 kDa polypeptide. The H(+)-ATPase was purified by octyl glucoside extraction and glycerol gradient centrifugation, and was cleaved by either cyanogen bromide digestion or limited tryptic proteolysis to isolate labeled fragments. Cyanogen bromide digestion resulted in numerous labeled fragments of mass less than 21 kDa. Seven fragments suitable for microsequence analysis were obtained by electrotransfer to poly(vinylidene difluoride) membranes. Five different regions of amino-acid sequence were identified, including fragments predicted to encompass both membrane-spanning and cytoplasmic protein structure domains. Most of the labeling of the cytoplasmic domain was concentrated in a region comprising amino acids 347 to 529. This catalytic region contains the site of phosphorylation and was previously suggested to be hydrophobic in character (Goffeau, A. and De Meis, L. (1990) J. Biol. 265, 15503-15505). Complementary labeling information was obtained from an analysis of limited tryptic fragments enriched for hydrophobic character. Six principal labeled fragments, of 29.6, 20.6, 16, 13.1, 11.4 and 9.7 kDa, were obtained. These fragments were found to comprise most of the putative transmembrane region and a portion of the cytoplasmic region that overlapped with the highly labeled active site-containing cyanogen bromide fragment. Overall, the extensive labeling of protein structure domains known to lie outside the bilayer suggests that [125I]TID labeling patterns cannot be unambiguously interpreted for the purpose of discerning membrane-embedded protein structure domains. It is proposed that caution should be applied in the interpretation of [125I]TID labeling patterns of the yeast plasma membrane H(+)-ATPase and that new and diverse approaches should be developed to provide a more definitive topology model.  相似文献   

5.
To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, but agonist inhibits photoincorporation into all subunits by greater than 75% (White, B. H., Howard, S., Cohen, S. G., and Cohen, J. B. (1991) J. Biol. Chem. 266, 21595-21607). [125I]TID-labeled sites on the beta- and delta-subunits were identified by amino-terminal sequencing of both cyanogen bromide (CNBr) and tryptic fragments purified by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by reversed-phase high-performance liquid chromatography. In the absence of agonist, [125I]TID specifically labels homologous aliphatic residues (beta L-257, delta L-265, beta V-261, and delta V-269) in the M2 region of both subunits. In the presence of agonist, labeling of these residues is reduced approximately 90%, and the distribution of labeled residues is broadened to include a homologous set of serine residues at the amino terminus of M2. In the beta-subunit residues beta S-250, beta S-254, beta L-257, and beta V-261 are all labeled in the presence of carbamylcholine. This pattern of labeling supports an alpha-helical model for M2 with the labeled face forming the ion channel lumen. The observed redistribution of label in the resting and desensitized states provides the first direct evidence for an agonist-dependent rearrangement of the M2 helices. The efficient labeling of the resting state channel in a region capable of structural change also suggests a plausible model for AChR gating in which the aliphatic residues labeled by [125I]TID form a permeability barrier to the passage of ions. We also report increased labeling of the M1 region of the delta-subunit in the presence of agonist.  相似文献   

6.
B H White  J B Cohen 《Biochemistry》1988,27(24):8741-8751
The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the gamma-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist alpha-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effects on [125I]TID labeling of the AChR. The regions of the AChR alpha-subunit that incorporate [125I]TID were mapped by Staphylococcus aureus V8 protease digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the alpha-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology.  相似文献   

7.
Using an acetylcholine-derivatized affinity column, we have purified human alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs) from a stably transfected HEK-293 cell line. Both the quantity and the quality of the purified receptor are suitable for applying biochemical methods to directly study the structure of the alpha4beta2 nAChR. In this first study, the lipid-protein interface of purified and lipid-reconstituted alpha4beta2 nAChRs was directly examined using photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID photoincorporated into both alpha4 and beta2 subunits, and for each subunit the labeling was initially mapped to fragments containing the M4 and M1-M3 transmembrane segments. For both the alpha4 and beta2 subunits, approximately 60% of the total labeling was localized within fragments that contain the M4 segment, which suggests that the M4 segment has the greatest exposure to lipid. Within M4 segments, [125I]TID labeled homologous amino acids alpha4-Cys582/beta2-Cys445, which are also homologous to the [125I]TID-labeled residues alpha1-Cys418 and beta1-Cys447 in the lipid-exposed face of Torpedo nAChR alpha1M4 and beta1M4, respectively. Within the alpha4M1 segment, [125I]TID labeled residues Cys226 and Cys231, which correspond to the [125I]TID-labeled residues Cys222 and Phe227 at the lipid-exposed face of the Torpedo alpha1M1 segment. In beta2M1, [125I]TID labeled beta2-Cys220, which is homologous to alpha4-Cys226. We conclude from these studies that the alpha4beta2 nAChR can be purified from stably transfected HEK-293 cells in sufficient quantity and purity for structural studies and that the lipid-protein interfaces of the neuronal alpha4beta2 nAChR and the Torpedo nAChR display a high degree of structural homology.  相似文献   

8.
Voltage-sensitive sodium channels purified from rat brain in functional form consist of a stoichiometric complex of three glycoprotein subunits, alpha of 260 kDa, beta 1 of 36 kDa, and beta 2 of 33 kDa. The alpha and beta 2 subunits are linked by disulfide bonds. The hydrophobic properties of these three subunits were examined by covalent labeling with the photoreactive hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) which labels transmembrane segments in integral membrane proteins. All three subunits of the sodium channel were labeled by [125I]TID when the purified protein was solubilized in mixed micelles of Triton X-100 and phosphatidylcholine (4:1). The half-time for photolabeling was approximately 7 min consistent with the half-time of 9 min for photolysis of TID under our conditions. Comparable amounts of TID per mg of protein were incorporated into each subunit. Purified sodium channels reconstituted in phosphatidylcholine vesicles were also labeled by TID with comparable incorporation per mg of protein into all three subunits. The efficiency of photolabeling of the three subunits was reduced from 39 to 44% by a 2-fold expansion of the hydrophobic phase of the reaction mixture but was unaffected by a 2-fold expansion of the aqueous phase, confirming that the photolabeling reaction took place in the lipid phase of the vesicle bilayer. The hydrophobic properties of the sodium channel subunits were examined further using phase separation in the nonionic detergent Triton X-114. Under conditions in which beta 1 is dissociated from alpha, the beta 1 subunit was preferentially extracted into the Triton X-114 phase, and the disulfide-linked alpha beta 2 complex was retained in the aqueous phase. When the disulfide bonds between the alpha and beta 2 subunits were reduced with dithioerythritol, the beta 2 subunit was also preferentially extracted into the Triton X-100 phase leaving the free alpha subunit in the aqueous phase. A preparative method for isolation of the beta 1 and beta 2 subunits was developed based on this technique. Considered together, the results of our hydrophobic labeling and phase separation experiments indicate that the alpha, beta 1, and beta 2 subunits all have substantial hydrophobic domains that may interact with the hydrocarbon phase of phospholipid bilayer membranes. Since the alpha subunit is known to be a transmembrane protein with many potential membrane-spanning segments, we conclude that the beta 1 and beta 2 subunits are likely to also be integral membrane proteins with one or more membrane-spanning segments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Blanton MP  McCardy EA 《Biochemistry》2000,39(44):13534-13544
To identify regions of the Torpedo Na,K-ATPase alpha-subunit that interact with membrane lipid and to characterize conformationally dependent structural changes in the transmembrane domain, we have proteolytically mapped the sites of photoincorporation of the hydrophobic compounds 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) and the phosphatidylcholine analogue [(125)I]TIDPC/16. The principal sites of [(125)I]TIDPC/16 labeling were identified by amino-terminal sequence analysis of proteolytic fragments of the Na,K-ATPase alpha-subunit and are localized to hydrophobic segments M1, M3, M9, and M10. These membrane-spanning segments have the greatest levels of exposure to the lipid bilayer and constitute the bulk of the lipid-protein interface of the Na,K-ATPase alpha-subunit. The extent of [(125)I]TID and [(125)I]TIDPC/16 photoincorporation into these transmembrane segments was the same in the E(1) and E(2) conformations, indicating that lipid-exposed segments located at the periphery of the transmembrane complex do not undergo large-scale movements during the cation transport cycle. In contrast, for [(125)I]TID but not for [(125)I]TIDPC/16, there was enhanced photoincorporation in the E(2) conformation, and this component of labeling mapped to transmembrane segments M5 and M6. Conformationally sensitive [(125)I]TID photoincorporation into the M5 and M6 segments does not reflect a change in the levels of exposure of these segments to the lipid bilayer as evidenced by the lack of [(125)I]TIDPC/16 labeling of these two segments in either conformation. These results suggest that [(125)I]TID promises to be a useful tool for structural characterization of the cation translocation pathway and for conformationally dependent changes in the pathway. A model of the spatial organization of the transmembrane segments of the Na,K-ATPase alpha- and beta-subunits is presented.  相似文献   

11.
We have investigated the domain of the bindin polypeptide that selectively associates with gel-phase phospholipid vesicles. We found that small trypsin fragments of bindin retain the ability to selectively associate with gel-phase vesicles. The primary amino acid sequence of bindin suggests that these peptides are derived from the central portion of the polypeptide between residues 77 and 126, which is the most hydrophobic region of bindin. We have also employed 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and novel, radioiodinated, photoactivatable derivatives of the polar head group of phosphatidylethanolamine (ASD-PE and ASA-PE) to identify membrane-associated polypeptide segments after the transfer of radiolabel from the probe to the bindin polypeptide. After photolysis, bindin was selectively labeled only from probes incorporated in gel-phase vesicles. The labeling of bindin was much more efficient from the head group probes ASA-PE and ASD-PE (8 and 2% of the total label, respectively) in comparison to the hydrophobic probe TID (less than 0.02% of the total label), suggesting that bindin is localized within the polar part of the bilayer. Protease mapping experiments with V8 protease, trypsin, and endoprotease Lys-C suggest that some of the probe label is distributed along the amino-terminal portion of bindin between residues 1 and 76 and the rest of the label is restricted to the segments between residues 77 and 126 which also selectively bind to gel-phase vesicles. The carboxyl-terminal portion of bindin between residues 127 and 236 is not labeled.  相似文献   

12.
C Harter  T B?chi  G Semenza  J Brunner 《Biochemistry》1988,27(6):1856-1864
To investigate the molecular basis of the low-pH-mediated interaction of the bromelain-solubilized ectodomain of influenza virus hemagglutinin (BHA) with membranes, we have photolabeled BHA in the presence of liposomes with the two carbene-generating, membrane-directed reagents 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) and a new analogue of a phospholipid, 1-palmitoyl-2-[11-[4-[3-(trifluoromethyl)diazirinyl]phenyl][2-3H] undecanoyl]-sn-glycero-3-phosphocholine ([3H]-PTPC/11). With the latter reagent, BHA was labeled in a strictly pH-dependent manner, i.e., at pH 5 only, whereas with [125I]TID, labeling was seen also at pH 7. In all experiments, the label was selectively incorporated into the BHA2 polypeptide, demonstrating that the interaction of BHA with membranes is mediated through this subunit, possibly via its hydrophobic N-terminal segment. Similar experiments with a number of other water-soluble proteins (ovalbumin, carbonic anhydrase, alpha-lactalbumin, trypsin, and soybean trypsin inhibitor) indicate that the ability to interact with liposomes at low pH is not a property specific for BHA but is observed with other, perhaps most, proteins.  相似文献   

13.
The hydrophobic, photoreactive probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to characterize the effects of lipids and detergents on acetylcholine receptor (AChR) conformation. Affinity purified AChR reconstituted into dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidic acid (DOPA), and cholesterol showed the same pattern of [125I]TID-labeling and demonstrated the same reduction in labeling of all four subunits upon desensitization by the agonist carbamylcholine, as partially purified AChR in native lipids. On the basis of the patterns of [125I]TID incorporation, reconstitution into DOPC/DOPA also appeared to stabilize the resting (functional) conformation of the AChR, while reconstitution in DOPC/cholesterol or DOPC alone largely desensitized the AChR. The effects of lipids on the functional state of the AChR was determined independently by measuring the ability of AChR reconstituted into different lipid combinations to undergo the change in affinity for agonist diagnostic of desensitization. The dramatic reduction in the apparent levels of [125I]TID associated with the subunits of the AChR observed upon agonist-induced desensitization was shown not to be due to a change in affinity for tightly bound lipid. Solubilization of affinity purified AChR reconstituted into DOPC/DOPA/cholesterol by the non-ionic detergents octyl glucoside, Triton X-100, and Tween 20 (final detergent concentration = 1%) was shown to produce the same pattern of [125I]TID-labeling as desensitization by agonist, while solubilization in 1% sodium cholate appeared to stabilize a conformation of the AChR more similar to the resting state.  相似文献   

14.
Identification of membrane-embedded domains of lipophilin from human myelin   总被引:1,自引:0,他引:1  
The organization of lipophilin in the intact human myelin membrane has been studied by labeling with the carbene photogenerated from 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). This hydrophobic probe labels mostly lipophilin (the main intrinsic protein of myelin) and the lipids within the bilayer. The domains of lipophilin which are embedded within the membrane have been identified by proteolytic fragmentation of the [125I]TID-labeled myelin, extraction with organic solvents, and separation by chromatography. Four labeled peptides were purified in this way. Polyacrylamide gel electrophoresis, amino acid compositions, automated sequencing, and carboxy-terminal analyses identified a 15K molecular weight peptide, T1 (residues 1-143), as representing the amino-terminal fragment, a 10K peptide, T2 (residues 1-97), representing a smaller amino-terminal fragment, a 5K peptide, T4 (residues 53-97), which represented the COOH-terminal half of peptide T2, and a 7K peptide, T3 (residues 205-268), which represented a sequence near the COOH terminus of lipophilin. The specific radioactivities of the peptides were determined; peptides T1 and T2 had similar specific activities, which were twice the specific activities of peptides T3 and T4. The data provide direct chemical evidence that human lipophilin has membrane-embedded domains between residues 1-97, 53-97, and 205-268, in agreement with some of the predictions of other investigators based on the sequence of bovine myelin lipophilin (proteolipid apoprotein) and a hydrophobicity diagram.  相似文献   

15.
The lysozyme-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles as studied at a wide range of pH is found to correlate well with the binding of this protein to the vesicles. An identical 6000 molecular weight segment of lysozyme at the N-terminal region is found to be protected from tryptic digestion when initially incubated with vesicles at several pH values. Only this segment is labeled by dansyl chloride, which is partitioned into the bilayer. These results suggest the penetration of one segment of lysozyme into the bilayer. Photoactivated labeling of the membrane-penetrating segment of lysozyme with 3-(trifluoromethyl)-3-([125I]iodophenyl)diazirine ([125I]TID) and subsequent identification of the labeled residues by Edman degradation and gamma-ray counting indicate that four amino acids from the N-terminal are located outside the hydrophobic core of the bilayer. Although treatment of the membrane-embedded segment with aminopeptidase failed to cleave any amino acids from the N-terminal, it appears that a loop of lysozyme segment near the N-terminal penetrates into the bilayer at acidic pH. A helical wheel diagram shows that the labeling is done mainly on one surface of the alpha-helix. The penetration kinetics as studied by time-dependent [125I]TID labeling coincide with the fusion kinetics, strongly suggesting that the penetration of the lysozyme segment into the vesicles is the cause of the fusion.  相似文献   

16.
Myelin basic protein is a water soluble membrane protein which interacts with acidic lipids through some type of hydrophobic interaction in addition to electrostatic interactions. Here we show that it can be labeled from within the lipid bilayer when bound to acidic lipids with the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and by two lipid photolabels. The latter included one with the reactive group near the apolar/polar interface and one with the reactive group linked to an acyl chain to position it deeper in the bilayer. The regions of the protein which interact hydrophobically with lipid to the greatest extent were determined by cleaving the TID-labeled myelin basic protein (MBP) with cathepsin D into peptides 1-43, 44-89, and 90-170. All three peptides from lipid-bound protein were labeled much more than peptides from the protein labeled in solution. However, the peptide labeling pattern was similar for both environments. The two peptides in the N-terminal half were labeled similarly and about twice as much as the C-terminal peptide indicating that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half. MBP can be modified post-translationally in vivo, including by deamidation, which may alter its interactions with lipid. However, deamidation had no effect on the TID labeling of MBP or on the labeling pattern of the cathepsin D peptides. The site of deamidation has been reported to be in the C-terminal half, and its lack of effect on hydrophobic interactions of MBP with lipid are consistent with the conclusion that the N-terminal half interacts hydrophobically more than the C-terminal half. Since other studies of the interaction of isolated N-terminal and C-terminal peptides with lipid also indicate that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half, these results from photolabeling of the intact protein suggest that the N-terminal half of the intact protein interacts with lipid in a similar way as the isolated peptide. The similar behavior of the intact protein to that of its isolated peptides suggests that when the purified protein binds to acidic lipids, it is in a conformation which allows both halves of the protein to interact independently with the lipid bilayer. That is, it does not form a hydrophobic domain made up from different parts of the protein.  相似文献   

17.
We have shown previously that the lipophilic photoreagent 3-(trifluoromethyl)3-m-([125I]iodophenyl)-diazirine ([125I]TID) photolabels all four subunits of the Torpedo nicotinic acetylcholine receptor (AChR) and that greater than 70% of this photoincorporation is inhibited by cholinergic agonists and some noncompetitive antagonists, including histrionicotoxin (HTX), but not phencyclidine (PCP; White, B.H., and Cohen, J.B. (1988) Biochemistry 27, 8741-8751). We have now examined the effects of nonradioactive TID on (a) AChR photoincorporation of [125I]TID, (b) AChR-mediated ion transport, and (c) AChR binding of several cholinergic ligands. We find that TID inhibits [125I]TID photoincorporation into the AChR to the same extent as carbamylcholine. The saturable component of [125I]TID photolabeling is half-maximal at 4 microM [125I]TID with 0.5 mol specifically incorporated per mol of AChR after 30 min photolysis with 60 microM [125I]TID. Repeated labeling of membranes at a fixed [125I]TID concentration gave results consistent with a maximal incorporation of one [125I]TID molecule per AChR. Nonradioactive TID also noncompetitively inhibits agonist-stimulated 22Na+ efflux from Torpedo vesicles with an IC50 of 1 microM. Furthermore, TID inhibits allosterically the binding of [3H]HTX, decreasing its affinity for the AChR 5-fold both in the presence and absence of agonist. In contrast, TID has little effect on [3H]PCP binding in the absence of agonist but completely inhibits it in the presence of agonist. TID enhances the cooperativity of [3H]nicotine binding. [125I]TID is thus a photoaffinity label for a novel noncompetitive antagonist binding site on the AChR that is linked allosterically to the binding sites of both agonists and other noncompetitive antagonists. The [125I]TID site is presumably located within the central pore of the AChR.  相似文献   

18.
Membrane-associated decay accelerating factor (DAF) of human erythrocytes (Ehu) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the Ehu acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact Ehu with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated from urine. Nitrous acid deamination cleavage of Ehu DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H]ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. Our findings indicate that DAF and AChE are anchored in Ehu by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi.  相似文献   

19.
The amino acid residues of the light-harvesting protein B870-alpha of Rhodospirillum rubrum G-9+ that in the chromatophore membranes are in contact with the lipid phase were identified by hydrophobic photolabeling. Three reagents have been used which all contained the trifluoromethyldiazirinylphenyl group as a photo-sensitive precursor of a carbene but which otherwise differed in shape, molecular structure, and in the way they interact with membranes. 3-Trifluoromethyl-3-(m-[125I]iodophenyl)diazirine is a highly lipid-soluble compound, 11-[4-[(trifluoromethyl)diazirinyl]-phenyl]-[10-3H] 9-oxaundecanoic acid is an analogue of a fatty acid, and 1-palmitoyl-2-[11-[(trifluoromethyl)diaziri-nyl] phenyl]-[10-3H]9-oxaundecanoyl]-sn-glycero-3-phosphorylcholine one of a lecithin. Following labeling of chromatophores with these reagents, B870-alpha was isolated and subjected to (solid phase) Edman degradations in order to determine individual amino acid residues labeled. The main features of these results are as follows. 1) Labeling occurred both within the N-terminal segment (residues 1-8) and within the predominantly hydrophobic transmembrane stretch (residues 14-33). 2) Label distribution patterns within segments are indicative of helical structures to which the reagents had access to one face only of the cylindrical envelopes. 3) With regard to the transmembrane segment, the label distribution patterns were similar for all reagents whereas striking differences were noticed within the N-terminal portion. The labeling patterns are consistent with previous models proposing tight association of the transmembrane helix with that of the B870-beta chain. They also suggest that the N-terminal segment forms an amphipathic helix which interacts with the water-lipid interface of the membrane.  相似文献   

20.
The water-soluble form of apoproteolipid (APL) from bovine brain myelin was found to bind with phosphatidylcholine (PC)/phosphatidylethanolamine (PE) (6:4) vesicles below pH 5. The protein bound to vesicles was photoactively labeled with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I)TID) and was digested with trypsin. A [125I]TID-labeled fragment with an apparent molecular weight of approximately 2,500 was extracted. An APL fragment with an identical Mr value was also obtained from the tryptic digest of APL/vesicle complex without prior labeling with [125I]TID. Determination of amino acid composition and the identification of the N-terminal amino acid residue of this unlabeled fragment showed that this protected segment covers the amino acid residues from Met-205 to Lys-228. In another experiment, the [125I]TID-labeled APL obtained from the above experiment without the proteolysis step was extracted and reconstituted into PC vesicles. Subsequent tryptic digestion of the exposed segment and comparison of the elution profile of the extracted polypeptides on a Sephadex LH-60 column with the published profile of these polypeptides indicated that the membrane-inserted segment of the water-soluble form of APL when bound to vesicles is the C-terminal region of this apoprotein within the amino acid residues between Met-205 and Lys-268.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号