首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In a previous report it had been suggested that the tyrP gene of Escherichia coli may be expressed from two separate promoters. We have endeavored to confirm this suggestion by primer extension studies and the separate subcloning of each of these promoters. In these studies, we found a single promoter whose expression was repressed by TyrR protein in the presence of tyrosine and activated by TyrR protein in the presence of phenylalanine. Two adjacent TYR R boxes, with the downstream one overlapping the tyrP promoter, are the likely targets for the action of TyrR protein. Mutational analysis showed that both TYR R boxes were required for tyrosine-mediated repression but that only the upstream box was required for phenylalanine-mediated activation. In vitro DNase protection studies established that whereas in the absence of tyrosine TyrR protein protected the region of DNA represented by the upstream box, at low TyrR protein concentrations both tyrosine and ATP were required to protect the region of DNA involving the downstream box and overlapping the RNA polymerase binding site.  相似文献   

2.
3.
The promoter-operator region of the aroL gene of Escherichia coli K-12 contains three TYR R boxes and one TrpR binding site. Mutational analysis showed that TYR R boxes 1 and 3 are essential for TyrR-mediated regulation of aroL expression, while a fully functional TYR R box 2 does not appear to be essential for regulation. Regulation mediated by the TrpR protein required the TYR R boxes and TrpR site to be functional and was observed in vivo only with a tyrR+ strain. Under conditions favoring the formation of TyrR hexamers, DNase I protection experiments revealed the presence of phased hypersensitive sites, indicative of DNA backbone strain. This suggests that TyrR-mediated repression involves DNA looping. Purified TrpR protein protected the putative TrpR binding site in the presence of tryptophan, and this protection was slightly enhanced in the presence of TyrR protein. This result along with the in vivo findings implies that TyrR and TrpR are able to interact in some way. Inserting 4 bp between TYR R box 1 and the TrpR binding site results in increased tyrosine repression and the abolition of the tryptophan effect. Identification of a potential integration host factor binding site and repression studies of a himA mutant support the notion that integration host factor binding normally exerts a negative effect on tyrosine-mediated repression.  相似文献   

4.
5.
In Escherichia coli K-12, the repression of tyrP requires the binding of the TyrR protein to the operator in the presence of coeffectors, tyrosine and ATP. This operator contains two 22-bp palindromic sequences which are termed TyrR boxes. Methylation, uracil, and ethylation interference experiments were used to identify the important sites in the TyrR boxes that make contacts with the TyrR protein. Methylation interference studies demonstrated that guanines at positions +8, -5, and -8 of the strong TyrR box and positions +8, -4, and -8 of the weak box are close to the TyrR protein. Uracil interference revealed that strong van der Waals contacts are made by the thymines at position -7 and +5 of the top strands of both strong and weak boxes and that weaker contacts are made by the thymines at positions +7 (strong box) and -5 and +7 (weak box) of the bottom strand. In addition, ethylation interference suggested that the phosphate backbone contacts are located at the end and central regions of the palindrome. These findings are supported by our results derived from studies of symmetrical mutations of the tyrP strong box. Overall, the results confirm the critical importance of the invariant (G x C)(C x G)8 base pairs for TyrR recognition and also indicate that interactions with (T x A)(A x T)7 are of major importance. In contrast, mutations in other positions result in weaker effects on the binding affinity of TyrR protein, indicating that these positions play a lesser role in TyrR protein recognition. Alanine scanning of both helices of the putative helix-turn-helix DNA-binding motif of TyrR protein has identified those amino acids whose side chains play an essential role in protein structure and DNA binding.  相似文献   

6.
Expression of the mtr gene, which encodes a tryptophan-specific transport system in Escherichia coli K-12, is activated by the TyrR protein. Two TyrR protein binding sites (TYR R boxes) are positioned upstream of the -35 promoter region. Mutational and DNase protection studies indicate that TyrR protein binds preferentially to the TYR R box closest to the promoter, and this is essential for activation of gene expression. In the presence of tyrosine and ATP, a second TyrR molecule is able to cooperatively bind to the second box and cause a further increase in the level of activation.  相似文献   

7.
8.
In the presence of tyrosine, the TyrR protein of Escherichia coli represses the expression of the tyrP gene by binding to the double TyrR boxes which overlap the promoter. Previously, we have carried out methylation, uracil, and ethylation interference experiments and have identified both guanine and thymine bases and phosphates within the TyrR box sequences that are contacted by the TyrR protein (J. S. Hwang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:1051-1058, 1997). In this study, we have used missing contact probing to test the involvement of all of the bases within the tyrP operator in the binding of TyrR. Our results indicate that nearly all the bases within the palindromic arms of the strong and weak boxes are important for the binding of the TyrR protein. Two alanine-substituted mutant TyrR proteins, HA494 and TA495, were purified, and their binding affinities for the tyrP operator were measured by a gel shift assay. HA494 was shown to be completely defective in binding to the tyrP operator in vitro, while, in comparison with wild-Type TyrR, TA495 had only a small reduction in DNA binding. Missing contact probing was performed by using the purified TA495 protein, and the results suggest that T495 makes specific contacts with adenine and thymine bases at the +/-5 positions in the TyrR boxes.  相似文献   

9.
10.
11.
Site-directed mutagenesis has been used to further characterize amino acid residues necessary for the activation of gene expression by the TyrR protein. Amino acid substitutions have been made at positions 2, 4, 5, 6, 7, 8, 9, 10, and 16. TyrR mutants with amino acid substitutions V-5-->P (VP5), VF5, CS7, CR7, DR9, RI10, RS10, and ER16 show no or very little activation of expression of either mtr or tyrP. In each case, however, the ability to repress aroF is unaltered. Amino acid substitutions at positions 4, 6, and 8 have no effect on activation. Small internal deletions of residues 10 to 19, 20 to 29, or 30 to 39 also destroy phenylalanine- or tyrosine-mediated activation of mtr and tyrP. In these mutants repression of aroF is also unaltered. In activation-defective tyrR mutants, expression of mtr is repressed in the presence of tyrosine. This tyrosine-mediated repression is trpR dependent and implies an interaction between TrpR and TyrR proteins in the presence of tyrosine.  相似文献   

12.
13.
14.
15.
Using a lac reporter system in Escherichia coli, we showed that the expression of E. herbicola tpl was regulated through TyrR and cAMP receptor protein. Three TyrR boxes upstream of tpl were essential for full expression. The results suggested that the tyrosine-mediated TyrR hexamerization was an important process. The DNA bending between two TyrR boxes, which is triggered by the binding of cAMP receptor protein, may facilitate the conformational change of TyrRs.  相似文献   

16.
Using a lac reporter system in Escherichia coli, we showed that the expression of E. herbicola tpl was regulated through TyrR and cAMP receptor protein. Three TyrR boxes upstream of tpl were essential for full expression. The results suggested that the tyrosine-mediated TyrR hexamerization was an important process. The DNA bending between two TyrR boxes, which is triggered by the binding of cAMP receptor protein, may facilitate the conformational change of TyrRs.  相似文献   

17.
18.
19.
Three sequences are required for complete repression of the aroF promoter by the TyrR repressor protein. Two of these operator sites lie adjacent to each other and overlap the -35 region of the aroF promoter while the third lies about 70 base pairs upstream of the promoter. An aroF-cat (chloramphenicol acetyltransferase) gene fusion has been used to assay the effect of DNA insertions that alter the distance between the two promoter-proximal and the third, distal, operator sites on the repression of the aroF promoter in vivo. The distal site contributes to the repression of the promoter up to a distance of about 400 base pairs and its effect is not dependent on its separation from the first and second sites by an integral number of turns of the DNA helix.  相似文献   

20.
The expression of the Escherichia coli torCAD operon, which encodes the anaerobically expressed trimethylamine N-oxide (TMAO) reductase respiratory system, requires the presence of TMAO in the medium. The response regulator, TorR, has recently been identified as the regulatory protein that controls the expression of the torCAD operon in response to TMAO. The torC regulatory region contains four direct repeats of a decameric consensus motif designated the tor boxes. Alteration by base substitutions of any of the four tor boxes in a plasmid containing a torC'-lacZ fusion dramatically reduces TorR-dependent torC expression. In addition, deletion of the distal tor box (box1) abolishes torC induction whereas the presence of a DNA fragment starting three bases upstream from box1 suffices for normal torC expression. Footprinting and gel-retardation experiments unambiguously demonstrated that TorR binds to the torC regulatory region. Three distinct regions are protected by TorR binding. One of approximately 24 nucleotides covers the first two tor boxes (box1 and box2); the second is located upstream from the −35 promoter sequence and includes the third tor box (box3); the last is found downstream from the −35 sequence and corresponds to the fourth tor box (box4). Binding to the upstream tor boxes (box1 and box2) appears to be stronger than binding to the downstream tor boxes (box3 and box4) since only the upstream region is protected at the lower concentration of TorR used in the footprinting experiments.
We propose a model in which multiple binding sites (i.e. the tor boxes) contribute to the formation of a nucleoprotein complex, but only one particular proximal site positions TorR properly so that it interacts with RNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号