首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jorge J. Casal  Harry Smith 《Planta》1988,176(2):277-282
Under continuous white light (WL), extension growth of the first internode in Sinapis alba L. was promoted by low red (R): far-red (FR) ratios reaching the stem and-or the leaves. Conversely, the growth promotion by end-of-day light treatments was only triggered by FR perceived by the leaves and cotyledons, while FR given to the growning internode alone was tatally ineffective. Continuous WL+FR given to the internode was also in-effective if the rest of the shoot remained in darkness. Both the background stem growth, and the growth promotion caused by either an end-of-day FR pulse or continuous WL+FR given to the internode, increased with increasing fluence rates of WL given to the rest of the shoot. The increase by WL of the growth-stimulatory effect of low phytochrome photoequilibria in the internode appears to be mediated by a specific blue-light-absorbing photoreceptor, as blue-deficient light from sodium-discharge lamps, or from filtered fluorescent tubes, promoted background stem growth similarly to WL but did not amplify the response to the R:FR ratio in the internode. Supplementing the blue-deficient light (94 mol·m-2·s-1) with low fluence rates of blue (<9 mol·m-2·s-1) restored the promotive effect of low R:FR reaching the internode.Abbreviations BL blue light - FR far-red light - PAR photosynthetically active radiation - Pfr/P ratio between the FR-absorbing form and total phytochrome - R red light - SOX low-pressure sodium lamp - WL white light Supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas (República Argentina) and the ORS scheme (UK)  相似文献   

2.
M. G. Holmes  W. H. Klein 《Planta》1985,166(3):348-353
Observations made with primary leaves of Phaseolus vulgaris L. demonstrated that phytochrome modulates light-induced stomatal movement. Removal of the far-red-absorbing form of the pigment (Pfr) with far-red (FR) radiation decreased the time required by the stomata to reach maximal opening following a dark-to-light transition; this effect of FR was fully reversible with red. Removal of Pfr with FR also decreased the time required to reach maximal closure following a light-to-dark transition, and the rate of closure was dependent on the final irradiation treatment before darkness. No evidence was found for phytochrome involvement in determining stomatal aperture under constant conditions of either darkness of light.Abbreviations and symbols Chl chlorophyll - D darkness - FR far-red - phytochrome photostationary state - Pfr, Pr FR- and R-absorbing forms of phytochrome, respectively - R red  相似文献   

3.
Richard Child  Harry Smith 《Planta》1987,172(2):219-229
Internode extension in young, light-grown mustard plants was measured continuously to a high degree of resolution using linear voltage displacement transducers. Plants were grown in background white light (WL) and the first internode was irradiated with supplementary far-red (FR) from fibre-optic light guides, depressing the Pfr/P (ratio of FR-absorbing form of phytochrome to total spectrophotometrically assayable phytochrome) within the internode and causing an acceleration of extension rate. The internode was sensitive to periods of FR as brief as 1 min, with a sharp increase in extension rate occurring after the return to background WL only. The mean latent period of the response to FR was approx. 10 min. Periods of FR longer than approx. 35 min caused an apparently biphasic growth response, with an initial sharp acceleration in extension rate (Phase 1) being followed by a brief deceleration and a further acceleration to a more-or-less steady elevated rate, somewhat less than the first peak (Phase 2). With such longer-term FR, extension rate decelerated upon FR switch-off after a mean lag of approx. 6 min, achieving the prestimulation extension rate within 16 min. The magnitude of the FR-induced increase in extension rate, expressed as a percentage of the rate in WL alone, was an inverse, linear function of the phytochrome photoequilibrium (i.e. Pfr/P, measured in etiolated test material irradiated under the same geometry) over the range 0.17 to 0.63. This relationship was not significantly affected by variations in backround WL fluence rate over the range 50–150 mol·m-2·s-1 and was held both for Phase 1 and Phase 2 of the response. The data provide evidence for rapid coupling/uncoupling between phytochrome and its transduction chain in the light-grown plant and for fluence-rate compensation of the regulation of extension rate. The extensive linearity of the relationship between phytochrome photoequilibrium and proportional extension rate increment allows for fine tuning in shade avoidance. The results are discussed with respect to recent evidence on the nature of phytochrome in light-grown plants and in relation to the function of phytochrome in plants growing in the natural environment.Abbreviations FR far-red light - LVDT linear voltage displacement transducer - P total spectrophotometrically assayable phytochrome - PAR photosynthetically active radiation (400–700 nm) - Pfr FR-absorbing form of phytochrome - Pr R-absorbing form of phytochrome - R red light - WL white light  相似文献   

4.
The effect of increased salinity on photosynthesis was studied in leaves of Plantago maritima L. that developed while plants were at low and high NaCl levels. In leaves that developed while plants were grown at 50 mol·m-3, exposure to 200 and 350 mol·m-3 NaCl resulted in reductions in net CO2 assimilation and stomatal conductance. The decline in CO2 assimilation in plants at 200 and 350 mol·m-3 NaCl occurred almost exclusively at high intercellular CO2 concentrations. The initial slope of the CO2 assimilation-intercellular CO2 (A-C i) curve, determined after salinity was increased, was identical or very similar to that measured initially. In contrast to the reductions observed in CO2 assimilation, there were no significant differences in O2 evolution rates measured at 5% CO2 among leaves from plants exposed to higher salinity and plants remaining at low salinity.Leaves that developed while plants were at increased salinity levels also had significantly lower net CO2 assimilation rates than plants remaining at 50 mol·m-3 NaCl. The lower CO2 assimilation rates in plants grown at 200 and 350 mol·m-3 NaCl were a result of reduced stomatal conductance and low intercellular CO2 concentration. There were no significant differences among treatments for O2 evolution rates measured at high CO2 levels. The increased stomatal limitation of photosynthesis was confirmed by measurements of the 13C/12C composition of leaf tissue. Water-use efficiency was increased in the plants grown at high salinity.Abbreviations and symbols A net CO2 assimilation rate - C a ambient CO2 concentration - C i intercellular CO2 concentration - 13C isotopic ratio (13C/12C) expressed relative to a standard - RuBP ribulose-1,5-bisphosphate  相似文献   

5.
M. Pollok  U. Heber  M. S. Naik 《Planta》1989,178(2):223-230
When leaves of Helianthus annuus, whose stomates had been opened in the dark in the absence of CO2, were exposed to 25% carbon monoxide (CO), stomatal conductivity for water vapor decreased from about 0.4 to 0.2 cm·s-1. The CO effect on stomatal aperture required a CO/O2 ratio of about 25. As this ratio was decreased the stomata opened, indicating that inhibitio of cytochrome-c oxidase by CO is competitive in respect to O2. Photosynthetically active red light was unable to reverse CO-induced stomatal closure even at high irradiances, when CO2 was absent. When it was present, stomatal opening was occasionally, but not consistently observed. Carbon monoxide did not inhibit photosynthetic carbon reduction in leaves of Helianthus.In contrast to red light, very weak blue light (405 nm) increased the stomatal aperture in the presence of CO. It also increased leaf ATP/ADP ratios which had been decreased in the presence of CO. The blue-light effect was not related to photosynthesis. Neither could it be explained by photodissociation of the cytochrome a 3-CO complex which has an absorption maximum at 430 nm. The data indicate that ATP derived from mitochondrial oxidative phosphorylation provides energy for stomatal opening in sunflower leaves in the dark as well as in the light. Indirect transfer of ATP from chloroplasts to the cytosol via the triose phosphate/phosphoglycerate exchange which is mediated by the phosphate translocator of the chloroplast envelope can support stomatal opening only if metabolite concentrations are high enough for efficient shuttle transfer of ATP. Blue light causes stomatal opening in the presence of CO by stimulating ATP synthesis.  相似文献   

6.
D. C. Morgan  T. O'Brien  H. Smith 《Planta》1980,150(2):95-101
Treatment of the whole of aSinapis alba plant with supplementary far-red light (FR), in back-ground white light (WL), induces a rapid increase in stem extension rate. This rapid increase is regulated by the light environment of the stem itself. Supplementary FR to the stem increases extension rate after a lag period of 10–15 min. A lag period of 3–4 h follows FR irradiation of the leaf, before an increase in extension rate is detectable. When the stem is given supplementary FR, the change in extension rate which is induced increases with increasing FR fluence rate, and with decreasing phytochrome photoequilibrium. There is no difference between the effects of supplementary FR max 719 nm and supplementary FR max 739 nm for these relationships. The increase in extension rate induced by supplementary FR is reversed by an increase in the fluence rate of red light (R). These data indicate that the response is controlled by phytochrome photoequilibrium.Abbreviations B blue light - FR far-red light - R red light - WL white light - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr); -Pfr/Ptot, measured - ER difference in stem extension rate, before and after treatment  相似文献   

7.
Temperature-dependent feedback inhibition of photosynthesis in peanut   总被引:7,自引:0,他引:7  
Arachis hypogaea L. is a tropical crop that is slow-growing at temperatures below 25°C. Unadapted CO2-assimilation rate (A) showed insufficient variation between 15 and 30°C in the short term (hours) to explain this marked reduction in growth. However, at longer periods (12 d), A was depressed as were growth rate and leafproduction rate. To examine the possible relationship between growth, A and sink demand plants were transferred from 30°C, which is near the optimum for growth, to a suboptimal temperature (19°C). In the first 2 d of cooling, A decreased by 50–70%, the stomata stayed open, and the intercellular CO2 concentration (ci) rose, i.e. the decrease in A of the cooled plants was the result of non-stomatal factors. Changes in dark respiration did not account for the decline in A.Clear evidence was obtained of sink control of A by independently manipulating the temperature of different leaves on the plant. Cooling (to 19°C) most of the plant (the sink) led to a 70% decline in A of the remaining leaves at 30°C after 3 d, whereas the converse treatments (30°C sink, 19°C source) resulted in small changes (17%). In plants at 19°C which were exposed to low CO2 concentration to prevent photosynthesis, A was not reduced when measured at normal CO2 concentrations, indicating that carbohydrate accumulation was responsible for the decline in A. Dry-matter build-up at suboptimal temperature was also consistent with end-product inhibition of photosynthesis.Abbreviations and symbols A (mol·m-2·s-1) rate of net CO2 assimilation - Ci (l·l-1) substomatal CO2 concentration - DW (g) dry weight - g (mol·m-2·s-1) stomatal conductance to diffusion of water vapour - PFD (mol·m-2·s-1) photon flux density  相似文献   

8.
R. Oelmüller  C. Schuster 《Planta》1987,172(1):60-70
The amount of in-vitro translatable mRNA of the light-harvesting chlorophyll a/b-binding protein (LHCP) of photosystem II strongly increases in darkness (D) after a 5-min red-light pulse while continuous illumination of mustard seedlings with far-red (FR), red or white light leads only to a slight increase in the amount of translatable LHCP-mRNA. No increase can be observed after a long-wavelength FR (RG9-light) pulse. However, a FR pretreatment prior to the RG9-light pulse strongly increase LHCP-mRNA accumulation in subsequent D. This is not observed in the case of the mRNA for the small subunit of ribulose-1.5-bisphosphate carboxylase. The increase of LHCP-mRNA in D after a FR pretreatment can be inhibited by a reillumination of the seedlings with FR. The inhibition of LHCP-mRNA accumulation during continuous illumination with FR and the strong increase in D following a FR illumination was found to be independent of chlorophyll biosynthesis since no correlation between chlorophyll biosynthesis and translatable LHCP-mRNA levels could be detected. Even strong changes in the amount of intermediates of chlorophyll biosynthesis caused by application of levulinic acid or 5-aminolevulinic acid did not affect LHCP-mRNA levels. Therefore, we conclude that the appearance of LHCP-mRNA is inhibited during continuous illumination, even though illumination leads to a storage of a light singal which promotes accumulation of translatable LHCP-mRNA in D.Abbreviations c continuous - Chl chlorophyll - D darkness - FR far-red light (3.5 W·m-2) - LHCP light-harvesting chlorophyll a/b-binding protein of photosystem II - NF Norfluration - PChl protochlorophyll(ide) - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome - R red light (6.8 W·m-2) - RG9-light long-wavelength FR (10 W·m-2) - SSU small subunit of ribulose-1.5-bisphosphate carboxylase - WL white light - () Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

9.
Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.Abbreviations Chl chlorophyll - FR far-red light - HF highirradiance FR-enriched light (400 mol·m–2·s–1, RFR = 0.72) - HW high-irradiance white light (400 mol·m–2 1·1 s–1RFR = 1.40) - LHCI, LHCII light-harvesting complex of PSI, PSII - qO quenching of dark-level chlorophyll fluorescence - qN non-photochemical quenching of variable chlorophyll fluorescence - qP photochemical quenching of variable chlorophyll fluorescence - R red light - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase We thank Dr. Sasha Ruban for assistance with the 77 K fluorescence measurements and for helpful discussions. This work was supported by Natural Environment Research Council Grant GR3/7571A.  相似文献   

10.
J. E. Hughes  E. Wagner 《Planta》1987,172(1):131-138
The effects of far-red light given against a background of white light on the stem-extension kinetics of three-week-old, light-grown Chenopodium album seedlings were investigated. Under white light alone, the stems (cotyledon-to-apex) extended almost exactly logarithmically with time. Under these conditions the increase in log [stem length in mm] per hour was approx. 3.7·10-3, equivalent to about 1% per h during both skoto-and photoperiods. Supplementary far-red given throughout each photoperiod massively stimulated extension. The calculated logarithmic extension rate, however, slowly returned to that of the controls, following an initial large increase. This is predicted by a model in which far-red light linearly increases the extension rate of individual internodes which arise at an exponentially increasing rate. The behaviour of the model is also consistent with critical experiments in which far-red was given as a pre-treatment or transiently, as well as with other published data. Far-red stimulation of logarithmic extension rate in successive photoperiods was closely and linearly correlated with calculated phytochrome photoequilibrium. Daily short periods of supplementary far-red were especially potent in accelerating extension; the plants seemed least responsive at the end of the photoperiod.Abbreviations FR supplementary far-red light - I stem length (mm) - LSER logarithmic stem extension rate - Pfr far-red absorbing form of phytochrome - R:FR red:far-red fluence rate ratio - WL white light - c calculated phytochrome photoequilibrium  相似文献   

11.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO seed transformed with Arabidopsis phyB - cDNA; CaMV cauliflower mosaic virus - FR far-red light - Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Pfr/Ptot phytochrome photoequilibrium - R red light - RBO seed transformed with rice phyB cDNA - RFR quantum ratio of red and far-red light - WL white light - WL + FR whitelight supplemented with far-red light - WT wild type The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.).  相似文献   

12.
Photoinhibition of photosynthesis was induced in intact leaves of Phaseolus vulgaris L. grown at a photon flux density (PFD; photon fluence rate) of 300 mol·m-2·s-1, by exposure to a PFD of 1400 mol·m-2·s-1. Subsequent recovery from photoinhibition was followed at temperatures ranging from 5 to 35°C and at a PFD of either 20 or 140 mol·m-2·s-1 or in complete darkness. Photoinhibition and recovery were monitored mainly by chlorophyll fluorescence emission at 77K but also by photosynthetic O2 evolution. The effects of the protein-synthesis inhibitors, cycloheximide and chloramphenicol, on photoinhibition and recovery were also determined. The results demonstrate that recovery was temperature-dependent with rates slow below 15°C and optimal at 30°C. Light was required for maximum recovery but the process was light-saturated at a PFD of 20 mol·m-2·s-1. Chloramphenicol, but not cycloheximide, inactivated the repair process, indicating that recovery involved the synthesis of one or more chloroplast-encoded proteins. With chloramphenicol, it was shown that photoinhibition and recovery occurred concomitantly. The temperature-dependency of the photoinhibition process was, therefore, in part determined by the effect of temperature on the recovery process. Consequently, photoinhibition is the net difference between the rate of damage and the rate of repair. The susceptibility of chilling-sensitive plant species to photoinhibition at low temperatures is proposed to result from the low rates of recovery in this temperature range.Abbreviations and symbols Da Dalton - Fo, Fm, Fv instantaneous, maximum, variable fluorescence emission - PFD photon flux density - PSII photosystem II - photon yield C.I.W.-D.P.B. Publication No. 871  相似文献   

13.
[14C]Methylamine influx intoPisum sativum L. cv. Feltham First seedlings showed Michaelis-Menten-type kinetics with apparentV max=49.2 mol·g-1 FW·h-1 and apparentK m=0.51 mM. The competitive interactions between ammonium and methylamine were most obvious when biphasic kinetics were assumed with saturation of the first phase at 0.05 mM. The inhibitor constant for ammonium (K i)=0.027 mM. When [14C]methylamine was used in trace amounts with ammonium added as substrate, the influx of tracer showed Michaelis-Menten-type kinetics with apparentV max=3.46 mol·g-1 FW·h-1 and apparentK m=0.15 mM. The initial rate of net ammonium uptake corresponded with that found when [14C]methylamine was used to trace ammonium influx. The latter was also stimulated by high pHo and inhibited by nitrate. Ammonium pretreatment±methionine sulphoximine or glutamine pretreatment of the seedlings inhibited subsequent [14C]methylamine influx, while methylamine or asparagine pretreatment stimulated [14C]methylamine influx. There was also a stimulatory effect of prior inoculation withRhizobium. The results are discussed in terms of current models for the regulation of ammonium uptake in plants.  相似文献   

14.
Summary Stem photosynthetic responses to environmental parameters were investigated with Psorothamnus spinosus in the Sonoran Desert of California. Light saturation of stem photosynthesis was equal to maximum midday summer irradance (1600–2000 mol·m-2·s-1). The optimum temperature for stem photosynthesis was 39°C, and lower stem temperatures (27–35°C) caused significant decreases (up to 50%) in stem photosynthesis. Positive stem photosynthesis was maintained up to 51°C. Stem photosynthesis was relatively insensitive to increasing vpd up to 5 kPa; However, stem conductance decreased by 25% at a vpd of 5 kPa. At vpd greater than 5 kPa stem photosynthesis decreased relatively more than that of stem conductance causing a decrease in water use efficiency and an increase an intercellular carbon dioxide concentration. Maximum stem photosynthetic rates were low (6.2–10.6 mol·m-2·s-1) on a stem surface area, but, stem photosynthetic rates of young shoots were substantially higher (19.5–33.3 mol· m-2·s-1) on a projected area basis.Dedicated to the memory of Dr. W.H. Muller  相似文献   

15.
Dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidation and zeaxanthin formation in chloroplasts, inhibited blue-light-stimulated stomatal opening in epidermal peels of Vicia faba L. in a concentration-dependent fashion. Complete inhibition was observed at 3 mM DTT. The DTT effect was specific for the stomatal response to blue light, and the red-light-stimulated opening, which depends on photosynthetic reactions in the guard cells, was unaffected. Preirradiation of stomata in epidermal peels with increasing photon fluence rates of red light, prior to an incubation in 10 mol·m-2·s-1 of blue light and 100 mol·m-2·s-1 red light, resulted in a DTT-sensitive, blue-light-stimulated opening that was proportional to the fluence rate of the red light pre-treatment. Guard cells in epidermal peels and guard-cell protoplasts irradiated with red light showed increases in their zeaxanthin content that depended on the fluence rate of red light, or on the incubation time. The increases in zeaxanthin concentration were inhibited by DTT. The obtained results indicate that zeaxanthin could function as a photoreceptor mediating the stomatal responses to blue light.Abbreviation DTT dithiothreitol This work was supported by grants from the National Science Foundation and the US Department of Energy to E.Z.  相似文献   

16.
Data for the maximum carboxylation velocity of ribulose-1,5-biosphosphate carboxylase, Vm, and the maximum rate of whole-chain electron transport, Jm, were calculated according to a photosynthesis model from the CO2 response and the light response of CO2 uptake measured on ears of wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir). The ratio Jm/Vm is lower in glumes of oat and awns of barley than it is in the bracts of wheat and in the lemmas and paleae of oat and barley. Light-microscopy studies revealed, in glumes and lemmas of wheat and in the lemmas of oat and barley, a second type of photosynthesizing cell which, in analogy to the Kranz anatomy of C4 plants, can be designated as a bundle-sheath cell. In wheat ears, the CO2-compensation point (in the absence of dissimilative respiration) is between those that are typical for C3 and C4 plants.A model of the CO2 uptake in C3–C4 intermediate plants proposed by Peisker (1986, Plant Cell Environ. 9, 627–635) is applied to recalculate the initial slopes of the A(pc) curves (net photosynthesis rate versus intercellular partial pressure of CO2) under the assumptions that the Jm/Vm ratio for all organs investigated equals the value found in glumes of oat and awns of barley, and that ribulose-1,5-bisphosphate carboxylase is redistributed from mesophyll to bundle-sheath cells. The results closely match the measured values. As a consequence, all bracts of wheat ears and the inner bracts of oat and barley ears are likely to represent a C3–C4 intermediate type, while glumes of oat and awns of barley represent the C3 type.Abbreviations A net photosynthesis rate (mol·m-2·s-1) - Jm maximum rate of whole-chain electron transport (mol·e-·m-2·s-1) - pc (bar) intercellular partial pressure of CO2 - PEP phosphoenolpyruvate - PPFD photosynthetic photon flux density (mol quanta·m-2·s-1) - RuBPCase ribulose bisphosphate carboxylase/oxygenase - RuBP ribulose bisphosphate - Vm maximum carboxylation velocity of RuBPCase (mol·m-2·s-1) - T* CO2 compensation point in the absence of dissimilative respiration (bar)  相似文献   

17.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

18.
The physiological responses of transgenic tobacco (Nicotiana tabacum L.) plants that express high levels of an introduced oat (Avena sativa L.) phytochrome (phyA) gene to various light treatments are compared with those of wild-type (WT) plants. Seeds, etiolated seedlings, and light-grown plants from a homozygous transgenic tobacco line (9A4) constructed by Keller et al. (EMBO J, 8, 1005–1012, 1989) were treated with red (R), far-red (FR), or white light (WL) with or without supplemental FR light, revealing major perturbations of the normal photobiological responses. White light stimulated germination of both WT and transgenic seed, but addition of FR to the WL treatment suppressed germination. In the WT, all fluence rates tested inhibited germination, but in the transgenics, reduction effluence rate partially relieved germination from the FR-mediated inhibition. It is suggested that the higher absolute levels of the FR-absorbing form of phytochrome (Pfr) in the irradiated transgenics, compared to the WT, may be responsible for the reduced FR-mediated inhibition of germination in the former. Hypocotyl extension of dark-grown seedlings of both WT and transgenic lines was inhibited by continuous R or FR irradiation, typical of the high-irradiance response (HIR). After 2 d of de-etiolation in WL, the WT seedlings had lost the FR-mediated inhibition of hypocotyl extension, whereas it was retained in the transgenics. The FR-mediated inhibition of hypocotyl extension in the transgenic seedlings after de-etiolation may reflect the persistence of an, FR-HIR response mediated by the overexpressed oat PhyA phytochrome. Light-grown WT seedlings exhibited typical shade-avoidance responses when treated with WL supplemented with high levels of FR radiation. Internode and petiole extension rates were markedly increased, and the chlorophyll ab ratio decreased, in the low-R: FR treatment. The transgenics, however, showed no increases in extension growth under low-R: FR treatments, and at low fluence rates both internode and petiole extension rates were significantly decreased by low R FR. Interpretation of these data is difficult. The depression of the chlorophyll ab ratio by low R FR was identical in WT and transgenic plants, indicating that not all shade-avoidance responses of light-grown plants were disrupted by the over-expression of the introduced oat phyA gene. The results are discussed in relation to the proposal that different members of the phytochrome family may have different physiological roles.Abbreviations FR far-red light - PAR photosynthetically active radiation - Pr, Pfr red- and FR-absorbing forms of phytochrome - Ptot total phytochrome - PhyA (PhyA) gene (encoded protein) for phytochrome - R red light - WL white light - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.C.M.; the production of the transgenic seed was funded by the U.S. Department of Energy (DE-F602-88ER13968) to R.D.V., and by E.I. du Pont de Nemours; Dr. G.C. Whitelam is thanked for the provision of monoclonal antibodies for the immunoblot analyses.  相似文献   

19.
Tobacco (Nicotiana tabacum L.) plants transformed with antisense rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 mol·m–2·s–1 irradiance, and at 28°C at 100, 300 and 1000 mol·m–2·s–1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 mol·m–2·s–1)-grown plants are exposed to high (750–1000 mol·m–2·s–1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 mol·m–2·s–1) are suddenly exposed to high and saturating irradiance (1500–2000 mol·m–2·s–1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in sun leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the light reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) Antisense plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.Abbreviations A rate of photosynthesis - C infRubisco supA flux control coefficient of Rubisco for photosynthesis - ci internal CO2 concentration - qE energy-dependent quenching of chlorophyll fluorescense - qQ photochemical quenching of chlorophyll fluorescence - NADP-MDH NADP-dependent malate dehydrogenase - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - RuBP ribulose-1,5-bisphosphate This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

20.
A. Ritter  E. Wagner  M. G. Holmes 《Planta》1981,153(6):556-560
The spectral control of hypocotyl elongation in light-grown Chenopodium rubrum L. seedlings has been studied. The results showed that although the seedlings responded to changes in the quantity of combined red and far-red radiation, they were also very sensitive to changes in the quantity of blue radiation reaching the plant. Altering the proportion of red: far-red radiation in broad waveband white light caused marked differences in hypocotyl extension. Comparison of the responses of green and chlorophyll-free seedlings indicated no qualitative difference in the response to any of the light sources used, although photosynthetically incompetent plants were more sensitive to all wavelengths. Blue light was found to act primarily of a photoreceptor which is different from phytochrome. It is concluded that hypocotyl extension rate in vegetation shade is photoregulated by the quantity of blue light and the proportion of red: far-red radiation. In neutral shade, such as that caused by stones or overlying soil, hypocotyl extension appears to be regulated primarily by the quantity of light in the blue waveband and secondarily by the quantity of light in the red and far-red wavebands.Abbreviations B blue - FR far-red - k 1, k 2 rate constants for photoconverison of Pr to Pfr and Pfr to Pr, respective - k 1/k 1 +k 2= phytochrome photoequilibrium - k 1 +k 2= phytochrome cycling rate - Pr=R absorbing form of phytochrome - Pfr=FR absorbing form of phytochrome - Ptot Pr+Pfr - PAR photosynthetically active radiation = 400–700 nm - R red - WL white light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号