首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A method for isolation and shoot regeneration from electrofused protoplasts of L. angustifolius and L. subcarnosus was developed. Viable protoplasts were isolated from leaves of in-vitro grown seedlings at an average yield of 6 × 105 protoplasts g−1 fresh weight. Liquid and agarose solidified B5 media were used for protoplast culture. In the liquid-culture system, all tested media, VKM, P1 and KM8p, were applicable for inducing cell division (84% of all tested petri dishes at four weeks) and colony formation. Media containing additional carbohydrates were suitable to produce compact calli with green and brown pigmentations in different combinations. Analysis of callus with molecular markers allowed to identify six somatic hybrids. However, none of the parental-protoplast derived cell colonies could develop shoots. This is the first report on protoplast fusion of L. angustifolius and L. subcarnosus with subsequent shoot regeneration.  相似文献   

2.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

3.
Chitinases are digestive enzymes that break down glycosidic bonds in chitin. In the current study, an endochitinase gene Lbchi31 was cloned from Limonium bicolor. The cDNA sequence of Lbchi31 was 1,107 bp in length, encoding 322 amino acid residues with a calculated molecular mass of 31.7 kDa. Clustal analysis showed that there was a highly conserved chitin-binding domains in Lbchi31 protein, containing four sulfide bridges. The Lbchi31 gene was inserted into the pPIC9 vector and transferred into yeast Pichia pastoris GS115 and KM71 for heterologous expression. The transformant harboring the Lbchi31 gene showed a clearly visible protein band with a molecular mass of more than 31 kDa in the SDS-PAGE gel, indicating that it had been translated in P. pastoris. Enzyme characterization showed that the optimal reaction condition for chitinase LbCHI31 activity was: 40°C, pH of 5.0 and 5 mmol l−1 of Mn2+. The maximum enzyme activity was 0.88 U ml−1 following exposure to the cell wall chitin of Valsa sordida. The LbCHI31 enzyme can efficiently degrade cell wall chitin of the phytopathogenic Rhizoctonia solani, Fusarium oxysporum, Sclerotinia sclerotiorum, V. sordida, Septoria tritici and Phytophthora sojae, suggesting that it has the biocontrol function to fungal phytopathogen.  相似文献   

4.
A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l−1 in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l−1, which permitted the proliferation of more non-transformed cells. Transgenic plants of “Alachua” and “Carlos” were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.  相似文献   

5.
On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5′RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.  相似文献   

6.
We cloned a gene encoding the succinate dehydrogenase iron-sulfur protein subunit (sip) from a bipolar mushroom, Pholiota microspora, and introduced a point mutation that confers carboxin resistance into this gene. Using this homologous selective marker and also a heterologous drug selective marker, the hygromycin B phosphotransferase gene (hph), we successfully constructed a DNA-mediated transformation system in P. microspora. Both these selection markers have high transformation efficiency: the efficiency of carboxin resistance transformation was about 88.8 transformants/μg pMBsip2 DNA using 5 × 106 protoplasts in regeneration plates containing 1.0 μg/ml carboxin, and the efficiency of hygromycin B resistance transformation was about 122.4 transformants/μg pMBhph1 DNA using 5 × 106 protoplasts in regeneration plates containing 150 μg/ml hygromycin B. Southern hybridization analysis showed that the introduced sequence (mutant sip or hph) was integrated into the chromosomal DNA in these transformants with a copy number of one or more.  相似文献   

7.
A gene encoding a new xylanase, named xynZG, was cloned by the genome-walking PCR method from the nematophagous fungus Plectosphaerella cucumerina. The genomic DNA sequence of xynZG contains a 780 bp open reading frame separated by two introns with the sizes of 50 and 46 bp. To our knowledge, this would be the first functional gene cloned from P. cucumerina. The 684 bp cDNA was cloned into vector pHBM905B and transformed into Pichia pastoris GS115 to select xylanase-secreting transformants on RBB-xylan containing plate. The optimal secreting time was 3 days at 25°C and enzymatic activities in the culture supernatants reached the maximum level of 362 U ml−1. The molecular mass of the enzyme was estimated to be 19 kDa on SDS-PAGE. The optimal pH and temperature of the purified enzyme is 6 and 40°C, respectively. The purified enzyme is stable at room temperature for at least 10 h. The K m and V max values for birchwood xylan are 2.06 mg ml−1 and 0.49 mmol min−1mg−1, respectively. The inhibitory effects of various mental ions were investigated. It is interesting to note that Cu2+ ion, which strongly inhibits most other xylanases studied, reduces enzyme activity by only 40%. Furthermore, enzyme activity is unaffected by EDTA even at a concentration of 5 mM.  相似文献   

8.
9.
Summary Protoplasts were isolated from Agrobacterium rhizogenes A4-transformed cell line of Medicago sativa L. The highest yield of protoplasts (4.2×106 per g fresh weight) was obtained from 12-d-old calluses after being subeultured on fresh medium. The viability of protoplasts reached over 80%. Protoplasts were induced to undergo sustained divisions when cultured in Durand et al. (DPD) medium supplemented with 2 mgl−1 (9.05 μM) 2,4-dichlorophenoxyacetic acid, 0,2mgl−1 (0.93 μM) kinetin, 0.3 M mannitol, 2% (w/v) sucrose, and 500 mgl−1 casein hydrolyzate at a plating density of 1.0×105 per ml. An agarose-beads culture method was appropriate for protoplast division of transformed alfalfa. The division frequency was about 30%. Numerous hairy roots were induced from protocalluses on Murashige and Skoog medium without growth regulators. Paper electrophoresis revealed that all of the regenerated hairy roots tested synthesized the corresponding opines. This protoplast culture system would be valuable for further somatic hybridization in forage legumes.  相似文献   

10.
High yields of viable protoplasts were produced from Porphyra okhaensis H. Joshi, Oza & Tewari following two-step enzymatic digestion (protease pretreatment and cell wall polysaccharides-degrading enzyme treatment) of the thallus. Pretreatment of the tissues with 1% Protease P6 at 20± 1 °C for 30 min prior to digestion with cell wall polysaccharide-degrading enzymes increased the protoplast yield two fold compared to tissues that were digested with polysaccharide-degrading enzyme mixture. The polysaccharide-degrading enzymes employed for protoplast isolation from P. okhaensis were Cellulase Onozuka R-10, Macerozyme R-10, abalone acetone powder and agarase. Suitable pH, temperature and duration of enzyme treatment for optimal production of viable protoplasts were pH 6, 20± 1 °C and 3 h, respectively. Mannitol (0.8 M) was found to be an excellent osmotic stabilizer. When the tissue of P. okhaensis pretreated with 1% protease solution was digested with commercial enzyme mixture consisting of 2% Cellulase Onozuka R-10, 2% Macerozyme R-10, 1% abalone acetone powder, 50 units of agarase and 0.8 M mannitol in 1% NaCl (adjusted to pH 6.0 with 25 mM MES buffer) with gentle agitation for 3 h at 20± 1 °C, 23.2± 0.24× 106 protoplasts g−1 fresh wt. were obtained. The regeneration rate of protoplasts isolated in the present study was found to be 79%. Protoplasts that regenerated cell walls underwent regular cell divisions and developed into leafy gametophytic thallus in the laboratory cultures. Further, the seeding of nylon threads with partially developed protoplasts of P. okhaensis was successful in the laboratory conditions and germlings as long as 3–4 cm were obtained from such seeded threads in one month period in aerated cultures.  相似文献   

11.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

12.
Recently, the prenyltransferase SirD was found to be responsible for the O-prenylation of tyrosine in the biosynthesis of sirodesmin PL in Leptosphaeria maculans. In this study, the behavior of SirD towards phenylalanine/tyrosine and tryptophan derivatives was investigated. Product formation has been observed with 12 of 19 phenylalanine/tyrosine derivatives. It was shown that the alanine structure attached to the benzene ring and an electron donor, e.g., OH or NH2, at its para-position are essential for the enzyme activity. Modifications were possible both at the side chain and the benzene ring. Enzyme products from seven phenylalanine/tyrosine derivatives were isolated and characterized by MS and NMR analyses including HSQC and HMBC and proven to be O- or N-prenylated derivatives at position C4 of the benzene rings. K M values of six selected derivatives were found in the range of 0.10–0.68 mM. Catalytic efficiencies (K cat/K M ) were determined in the range of 430–1,110 s−1·M−1 with l-tyrosine as the best substrate. In addition, 7 of 14 tested tryptophan analogs were also accepted by SirD and converted to C7-prenylated derivatives, which was confirmed by comparison with products obtained from enzyme assays using a 7-dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus.  相似文献   

13.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

14.
15.
Direct genetic transformation of mesophyll protoplasts was studied in Pelargonium × hortorum. Calcein and green-fluorescent protein (GFP) gene were used to set up the process. Electroporation (three electric pulses from a 33-μF capacitor in a 250-V cm−1 electric field) was more efficient than PEG 6000 for membrane permeation, protoplast survival and cell division. Transient expression of GFP was detected in 33–36% of electroporated protoplasts after 2 days and further in colonies. A protoplast suspension conductivity of >1,500 μS cm−1 allowed high colony formation and plant regeneration. Stable transformation was obtained using the plasmid FAJ3000 containing uidA and nptII genes. When selection (50 mg l−1 kanamycin) was achieved 6 weeks after electroporation, regenerated shoots were able to grow and root on 100 mg l−1 kanamycin. The maximum transformation efficiency was 4.5%, based on the number of colonies producing kanamycin-resistant rooted plants or 0.7% based on the number of cultured protoplasts. Polymerase chain reaction (PCR) analysis on in vitro micropropagated plants showed that 18 clones out of 20 contained the nptII gene, while the uidA gene was absent. These results were confirmed after PCR analyses of five glasshouse-acclimatized clones.  相似文献   

16.
Pseudomonas fluorescens-CS2 metabolized ethylbenzene as the sole source of carbon and energy. The involvement of catechol as the hydroxylated intermediate during the biodegradation of ethylbenzene was established by TLC, HPLC and enzyme analysis. The specific activity of Catechol 2,3-dioxygenase in the cell free extracts of P. fluorescens-CS2 was determined to be 0.428 μmoles min−1 mg−1 protein. An aqueous-organic, Two-Phase Batch Culture System (TPBCS) was developed to overcome inhibition due to higher substrate concentrations. In TPBCS, P. fluorescens-CS2 demonstrated ethylbenzene utilization up to 50 mM without substrate inhibition on inclusion of n-decanol as the second phase. The rate of ethylbenzene metabolism in TPBCS was found enhance by fivefold in comparison with single phase system. Alternatively the alginate, agar and polyacrylamide matrix immobilized P. fluorescens-CS2 cells efficiently degraded ethylebenzene with enhanced efficiency compared to free cell cultures in single and two-phase systems. The cells entrapped in ployacrylamide and alginate were found to be stable and degradation efficient for a period of 42 days where as agar-entrapped P. fluorescens was stable and efficient a period of 36 days. This demonstrates that alginate and polyacrylamide matrices are more promising as compared to agar for cell immobilization.  相似文献   

17.
Vital protoplasts from Spathiphyllum wallisii ‘Alain’ and Anthurium scherzerianum ‘238’ were isolated from both somatic embryos and leaves. The highest yields were obtained when 1.5% cellulase, 0.5% macerase and 0.5% driselase were used for Spathiphyllum wallisii leaves and 0.5% cellulase, 0.3% macerase and 0.5% driselase for Anthurium scherzerianum embryos. About 1 × 106 protoplasts g−1 and 1 × 105 protoplasts g−1 could be isolated from leaves and embryos, respectively. For protoplast fusion Spathiphyllum wallisii ‘Alain’ and Anthurium scherzerianum ‘238’ were mixed in a 1:1 ratio in a fusion solution containing 1 mM CaCl2·2H2O, 1 mM MES and 0.5 M mannitol. Fusion was performed by protoplast alignment under 500 V cm−1 alternating current for 60 s and subsequent generation of two pulses of 4500 V cm−1 direct current during 50 μs. Development until colony stage was achieved using agarose beads for protoplast culture.  相似文献   

18.
Vo MT  Lee KW  Kim TK  Lee YH 《Biotechnology letters》2007,29(12):1915-1920
The fadBA operon in the fatty acid β-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l−1 stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l−1 with a cell dry weight of 10.3 g l−1.  相似文献   

19.
Twenty-two Bacillus cereus strains were screened for phospholipase C (PLC, EC 3.1.4.3) activity using p-nitrophenyl phosphorylcholine as a substrate. Two strains (B. cereus SBUG 318 and SBUG 516) showed high activity at elevated temperatures (>70°C) at acidic pH (pH 3.5–6) and were selected for cloning and functional expression using Bacillus subtilis. The genes were amplified from B. cereus DNA using primers based on a known PLC sequence and cloned into the expression vector pMSE3 followed by transformation into B. subtilis WB800. On the amino acid level, one protein (PLC318) was identical to a PLC described from B. cereus, whereas PLC516 contained an amino acid substitution (E173D). PLC production using the recombinant strains was performed by an acetoin-controlled expression system. For PLC516, 13.7 U g−1 wet cell weight was determined in the culture supernatant after 30 h cultivation time. Three purification steps resulted in pure PLC516 with a specific activity of 13,190 U mg−1 protein.  相似文献   

20.
The objective of this study was to evaluate the in vitro immunomodulating capacity of Lactobacillus coryniformis subsp torquens T3L (L. coryniformis T3L) isolated from traditional fermented yak’s milk in Tibet, China, and Lactobacillus paracasei supsp. paracasei M5L (L. paracasei M5L)isolated from kumiss in Sinkiang, China was used as control. The effects of live bacteria, cell wall and genomic DNA of the two Lactobacillus strains on human peripheral blood mononuclear cells (PBMCs) proliferation, production of interleukin-12 (IL-12 p70), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), and natural killer (NK) cell activity were assessed. The live bacteria, cell wall and genomic DNA of the two lactobacilli exerted proliferative effects on PBMCs. Live bacteria at 1 × 106 c.f.u. ml−1, cell wall at 20 μg protein ml−1 and DNA at 50 μg DNA ml−1 of the strainS induced the secretion of IL-12 (p70), IFN-γ and TNF-α by PBMCs. NK cell activities increased after cultivation of PBMCs with live bacteria, cell wall and DNA of the strains. Overall, these results demonstrate that the live bacteria, cell wall and genomic DNA of the two Lactobacillus strains exhibit immunomodulating activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号