首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Aim Species in the tropics respond to global warming by altitudinal distribution shifts. Consequences for biodiversity may be severe, resulting in lowland attrition, range‐shift gaps, range contractions and extinction risks. We aim to identify plant groups (growth forms, families, endemic status) with higher than average risks. Location South Ethiopian highlands. Methods Based on observational data from mainly unexplored and remote mountain regions, we applied a published model to project the consequences of an upward shift of thermal site conditions on the altitudinal distribution of 475 plant species. Annual average temperature increases of up to 5 °C were evaluated. Differences between groups of species were analysed by a permutation procedure and Generalized Linear Models. Results Because of a limited regional species pool, even mild warming is projected to create strong potential risks concerning lowland attrition, i.e. the net loss of species richness because of upward range shifts in the absence of new species arriving. Likewise, many species are expected to face range‐shift gaps, i.e. the absence of an overlap between future and current altitudinal ranges already under mild warming scenarios. Altitudinal contractions and mountain‐top extinctions will potentially become important when warming exceeds 3.5 °C. Mean area per species is projected to decline by 55% for the A2 emissions scenario (+4.2 °C until 2100) because of the physical shape of the mountains. Higher than average vulnerability is expected for endemic species as well as for herbs and ferns. Plant families that are especially threatened are identified. Main conclusions Lowland biotic attrition and range‐shift gaps as predicted by a simple model driven by shifts of isotherms will result in novel challenges for preserving mountain biodiversity in the inner tropics. Whereas contractions of occupied area are expected to threaten endemic and already endangered species in particular, we suggest that conservation priorities can be identified based on simple prognostic models even without precise regional warming scenarios.  相似文献   

2.
Aim Assessing potential response of alpine plant species distribution to different future climatic and land‐use scenarios. Location Four mountain ranges totalling 150 km2 in the north‐eastern Calcareous Alps of Austria. Methods Ordinal regression models of eighty‐five alpine plant species based on environmental constraints and land use determining their abundance. Site conditions are simulated spatially using a GIS, a Digital Terrain Model, meteorological station data and existing maps. Additionally, historical records were investigated to derive data on time spans since pastures were abandoned. This was then used to assess land‐use impacts on vegetation patterns in combination with climatic changes. Results A regionalized GCM scenario for 2050 (+ 0.65 °C, ?30 mm August precipitation) will only lead to local loss of potential habitat for alpine plant species. More profound changes (+ 2 °C, ?30 mm August precipitation; + 2 °C, ?60 mm August precipitation) however, will bring about a severe contraction of the alpine, non‐forest zone, because of range expansion of the treeline conifer Pinus mugo Turra and many alpine species will loose major parts of their habitat. Precipitation change significantly influences predicted future habitat patterns, mostly by enhancing the general trend. Maintenance of summer pastures facilitates the persistence of alpine plant species by providing refuges, but existing pastures are too small in the area to effectively prevent the regional extinction risk of alpine plant species. Main conclusions The results support earlier hypotheses that alpine plant species on mountain ranges with restricted habitat availability above the treeline will experience severe fragmentation and habitat loss, but only if the mean annual temperature increases by 2 °C or more. Even in temperate alpine regions it is important to consider precipitation in addition to temperature when climate impacts are to be assessed. The maintenance of large summer farms may contribute to preventing the expected loss of non‐forest habitats for alpine plant species. Conceptual and technical shortcomings of static equilibrium modelling limit the mechanistic understanding of the processes involved.  相似文献   

3.
The fully vegetated summits of the table mountains that form the Guayana Highlands (GH), in northern South America, hold amazing biodiversity and endemism levels, and unique vegetation types. In spite of their present‐day healthy appearance, their biota is seriously threatened of habitat loss by upward displacement, because of the projected warming for the end of this century. Available data are still insufficient for a definite assessment, but preliminary estimations based on representative endemic vascular plant species show that roughly one‐tenth to one‐third of them would loss their habitat with the 2–4°C temperature increase predicted for the region by AD 2100. Given the underlying endemism, the eventual loss of biodiversity will be of global nature. Other mountain ranges around the world with similar characteristics of the GH, namely topographical isolation, high endemism and absence of nival stage because of the lower altitude, would be under similar unexpected risk, and should be urgently considered for conservation purposes.  相似文献   

4.
5.
The gelada baboon is a graminivorous primate whose ecology is unusually sensitive to ambient temperature. A systems model of the socio-ecology of the gelada is used to predict the impact of global warming on the species’ altitudinal distribution. The species’ lower altitudinal limit will rise by ≈ 500 m for every 2 °C increase in global mean temperature. A 7 °C rise in temperature would be sufficient to result in the species being confined to a small number of isolated mountain peaks, where its chances of survival will be greatly reduced. Changes in local climate are also likely to have significant effects on agricultural practice on the Ethiopian highlands, and this in turn is likely to have repercussions for the distribution patterns of the gelada by further constraining the habitat available to them.  相似文献   

6.
Across a large mountain area of the western Swiss Alps, we used occurrence data (presence‐only points) of bird species to find suitable modelling solutions and build reliable distribution maps to deal with biodiversity and conservation necessities of bird species at finer scales. We have performed a multi‐scale method of modelling, which uses distance, climatic, and focal variables at different scales (neighboring window sizes), to estimate the efficient scale of each environmental predictor and enhance our knowledge on how birds interact with their complex environment. To identify the best radius for each focal variable and the most efficient impact scale of each predictor, we have fitted univariate models per species. In the last step, the final set of variables were subsequently employed to build ensemble of small models (ESMs) at a fine spatial resolution of 100 m and generate species distribution maps as tools of conservation. We could build useful habitat suitability models for the three groups of species in the national red list. Our results indicate that, in general, the most important variables were in the group of bioclimatic variables including “Bio11” (Mean Temperature of Coldest Quarter), and “Bio 4” (Temperature Seasonality), then in the focal variables including “Forest”, “Orchard”, and “Agriculture area” as potential foraging, feeding and nesting sites. Our distribution maps are useful for identifying the most threatened species and their habitat and also for improving conservation effort to locate bird hotspots. It is a powerful strategy to improve the ecological understanding of the distribution of bird species in a dynamic heterogeneous environment.  相似文献   

7.
苏宗明   《广西植物》1985,(3):227-243
大瑶山是广西有名的大山,北纬23°40′—24°24′,东经109°50′—110°27′,面积约2080平方公里。 大瑶山起源于二迭纪,是一座古老的山体。大瑶山生物种类丰富多彩,区系植物213个科,2335种;陆栖脊椎动物69科,281种;昆虫176科,836种;森林植被四个植被型,34个群系。大瑶山生物地理成份复杂,植物区系有热带东南亚、东亚、北温带、旧世界热带和泛热带的成份;昆虫区系有东洋种、古北种和本地特有种。古老、孑遗和特有、珍稀种类不少,蕨类植物250种,裸子植物7科22种,木兰科4属16种,国家保护的珍稀植物有桫椤、白豆杉、福建柏、猪血木、大果木五加、伞花木、南华木、紫荆、金莲木等35种;珍稀动物有瑶山鳄蜥、猕猴、短尾猴、大鲵、山瑞、红腹角雉等12种。大瑶山具重要经济意义的种类较突出,如:灵香草、八角、玉桂、罗汉果等。因此,大瑶山是广西中部一个重要的生态系统;是广西重要的和理想的科学研究和教学之处;是广西非常重要的自然物种基地;是广西重要的木材和土特产基地。大瑶山今后主要是保护起来,建立自然保护区,同时,大力发展木材和土特产。  相似文献   

8.
9.
Understanding the forces that shape the distribution of biodiversity across spatial scales is central in ecology and critical to effective conservation. To assess effects of possible richness drivers, we sampled ant communities on four elevational transects across two mountain ranges in Colorado, USA, with seven or eight sites on each transect and twenty repeatedly sampled pitfall trap pairs at each site each for a total of 90 d. With a multi‐scale hierarchical Bayesian community occupancy model, we simultaneously evaluated the effects of temperature, productivity, area, habitat diversity, vegetation structure, and temperature variability on ant richness at two spatial scales, quantifying detection error and genus‐level phylogenetic effects. We fit the model with data from one mountain range and tested predictive ability with data from the other mountain range. In total, we detected 105 ant species, and richness peaked at intermediate elevations on each transect. Species‐specific thermal preferences drove richness at each elevation with marginal effects of site‐scale productivity. Trap‐scale richness was primarily influenced by elevation‐scale variables along with a negative impact of canopy cover. Soil diversity had a marginal negative effect while daily temperature variation had a marginal positive effect. We detected no impact of area, land cover diversity, trap‐scale productivity, or tree density. While phylogenetic relationships among genera had little influence, congeners tended to respond similarly. The hierarchical model, trained on data from the first mountain range, predicted the trends on the second mountain range better than multiple regression, reducing root mean squared error up to 65%. Compared to a more standard approach, this modeling framework better predicts patterns on a novel mountain range and provides a nuanced, detailed evaluation of ant communities at two spatial scales.  相似文献   

10.
Large scale heterogeneous distribution of biodiversity has become a hot topic for ecologists and conservationists. A threat status assessment combined with geographic distribution patterns of threatened plants in China has been conducted at a national scale in this study based upon a distribution database that refers to both specimen records and published references. Currently, 302 threatened plant species are cataloged in the “National Protected Key Wild Plants” in China belonging to 92 families and 194 genera. Results of the assessment according to the Categories and Criteria system of The World Conservation Union (IUCN) Red List indicate that three species have been assessed as Extinct in Wild (EW) while a further 79, 99 and 112 species have been assessed as Critically Endangered (CR), Endangered (EN), and Vulnerable (VU), respectively. Distribution patterns of threatened plants were analyzed with GIS to identify areas of high species diversity. It was found that threatened plant species occur unevenly within counties and are concentrated in the following eight hotspots: the central and southern Hengduanshan mountain area; the southeast regions of Yunnan as well as Xishuangbanna and southwestern Guangxi; the southern Hainan island; the border mountainous regions of Guizhou, Hunan and Guangxi provinces; the mountainous regions of southwestern Hubei and northern Hunan; southwestern Zhejiang and western Fujian; central Sichuan and southern Gansu; and the western mountains of Guangdong. Moreover, the 12 counties with the greatest number of threatened plant species represent cumulatively more than 50% of the total listed species and, therefore, are the regions in China that should be prioritized for conservation efforts. By overlapping the map of threatened plant species with the distribution of national nature reserves, a gap was identified in protected areas. This research will ultimately provide insights for prioritizing biodiversity conservation as well as processing the mechanisms of distribution patterns.  相似文献   

11.
Wildlife agencies are generally tasked with managing and conserving species at state and local levels simultaneously. Thus, it is necessary for wildlife agencies to understand basic ecological processes of a given species at multiple scales to aid decision making at commensurately varied spatial and behavioral scales. Mountain lions (Puma concolor) occur throughout California, USA, and are at the center of a variety of management and conservation issues. For example, they are genetically and demographically at risk in 1 region yet apparently stable and negatively affecting endangered species in another. Currently, no formal plan exists for mountain lions in California to deal with these diverse scenarios involving issues of local mountain lion population viability and problems related to predation of endangered species. To facilitate development of a state-wide management and conservation plan, we quantified habitat selection by mountain lions at 2 spatial scales across the range of environmental conditions in which the species is found in California. Our analyses used location data from individuals (n = 263) collared across the state from 2001–2019. At the home range scale, mountain lions selected habitat to prioritize meeting energetic demands. At the within home range scale, mountain lions avoided areas of human activity. Further, our analyses revealed 165,350–170,085 km2, depending on season, of suitable mountain lion habitat in California. Fifty percent of the suitable habitat was on unprotected lands and thus vulnerable to development. These habitat selection models will help in the development of a state-wide conservation and management plan for mountain lions in California by guiding mountain lion population monitoring through time, prioritization of habitat to be conserved for maintaining demographic connectivity and gene flow, and efforts to mediate mountain lion-prey interactions. Our work and application area will help with wildlife policy and management decisions related to depredation problems at the local scale and issues of habitat connectivity at the statewide scale. © 2019 The Wildlife Society.  相似文献   

12.
The mainland portion of the Adelaide Geosyncline (Mount Lofty and Flinders Ranges) has been postulated as an important arid‐zone climate refugium for Australia. To test the sensitivity of this putative Australian arid biome refugium to contemporary climate change, we compared Generalized Additive Modelling and MaxEnt distribution models for 20 vascular plant species. We aimed to identify shared patterns to inform priority areas for management. Models based on current climate were projected onto a hypothetical 2050 climate with a 1.5°C increase in temperature and 8% decrease in rainfall. Individual comparisons and combined outputs of logistic models for all 20 species showed range contraction to shared refugia in the Flinders Ranges and southern Mount Lofty Ranges. Modelling suggests the Flinders Ranges will experience species turnover while suitable climatic habitat will be retained in the Mount Lofty Ranges for the current suite of species. Fragmentation of the southern Mount Lofty Ranges poses management challenges for conserving species diversity with warming and drying. Although projected models must be interpreted carefully, they suggest the region will remain an important but threatened refugium for mesic species at a continental scale.  相似文献   

13.
An empirical model of carbon fluxes in Russian tundra   总被引:1,自引:0,他引:1  
This study presents an empirical model based on a GIS approach, which was constructed to estimate the large‐scale carbon fluxes over the entire Russian tundra zone. The model has four main blocks: (i) the computer map of tundra landscapes; (ii) data base of long‐term weather records; (iii) the submodel of phytomass seasonal dynamics; and (iv) the submodel of carbon fluxes. The model uses exclusively original in situ diurnal CO2 flux chamber measurements (423 sample plots) conducted during six field seasons (1993–98). The research sites represent the main tundra biome landscapes (arctic, typical, south shrub and mountain tundras) in the latitudinal diapason of 65–74°N and longitudinal profile of 63°E?172°W. The greatest possible diversity of major ecosystem types within the different landscapes was investigated. The majority of the phytomass data used was obtained from the same sample plots. The submodel of carbon fluxes has two dependent [GPP, Gross Respiration (GR)] and several input variables (air temperature, PAR, aboveground phytomass components). The model demonstrates a good correspondence with other independent regional and biome estimates and carbon flux seasonal patterns. The annual GPP of Russian tundra zone for the area of 235 × 106 ha was estimated as ?485.8 ± 34.6 × 106 tC, GR as +474.2 ± 35.0 × 106 tC, and NF as ?11.6 ± 40.8 × 106 tC, which possibly corresponds to an equilibrium state of carbon balance during the climatic period studied (the first half of the 20th century). The results advocate that simple regression‐based models are useful for extrapolating carbon fluxes from small to large spatial scales.  相似文献   

14.
The red list has become a ubiquitous tool in the conservation of species. We analyzed contemporary trends in the threat levels of European orchids, in total 166 species characterized in 27 national red lists, in relation to their reproductive biology and growth form, distribution area, and land cover where they occur. We found that species in central Europe are more threatened than those in the northern, southern, or Atlantic parts of Europe, while species were least threatened in southern Europe. Nectarless and tuberous species are significantly more threatened than nectariferous and rhizomatous taxa. Land cover (ratios of artificial land cover, area of pastures and grasslands, forests and inland wetlands) also significantly impacted the threat level. A bigger share of artificial land cover increases threat, and a bigger share of pasture and grassland lowers it. Unexpectedly, a bigger share of inland wetland area in a country increased threat level, which we believe may be due to the threatened nature of wetlands themselves relative to other natural land cover types. Finally, species occurring in multiple countries are on average less threatened. We believe that large‐scale analysis of current IUCN national red lists as based on their specific categories and criteria may particularly inform the development of coordinated regional or larger‐scale management strategies. In this case, we advocate for a coordinated EU protection and restoration strategy particularly aimed at central European orchids and those occurring in wetland area.  相似文献   

15.
Increasing species regression speeds are one of the consequences of global warming, which affect both rare and abundant species. However, long-term monitoring data are rarely available to understand the effects of global warming. Alpine ecosystems on islands are some of the most unique in terms of species composition around the world, with high proportions of endemics. Yet, they are some of the most threatened by climate change. In such areas, global warming causes the invasion of other species that move upwards from ecosystems at lower elevations, which exacerbates climate change impact on these areas. Obtaining fine-scale data on decline rates in keystone species in these areas is essential to understand the degradation processes underway in high mountain systems. This study uses historical aerial images to analyse at a fine-scale the rate of decline of a keystone endemic species, Spartocytisus supranubius (L. f.) Christ ex G. Kunkel, in Tenerife (Canary Islands). Fifty plots were randomly selected in Teide National Park to evaluate the area occupied by living individuals of this species using image segmentation techniques. We conclude that the dominant species in this area, S. supranubius, underwent a mean decline over 32 years between 28.7 and 41.0, depending on whether we consider the observed or interpolated data. Our results suggest that we are facing a possible collapse of the broom and allow us to propose listing this species as vulnerable, according to the IUCN criteria of threatened species. The regression in coverage was negatively correlated with temperature and positively with precipitation.  相似文献   

16.
Mountains, especially in the tropics, harbour a unique and large portion of the world''s biodiversity. Their geographical isolation, limited range size and unique environmental adaptations make montane species potentially the most threatened under impeding climate change. Here, we provide a global baseline assessment of geographical range contractions and extinction risk of high-elevation specialists in a future warmer world. We consider three dispersal scenarios for simulated species and for the world''s 1009 montane bird species. Under constrained vertical dispersal (VD), species with narrow vertical distributions are strongly impacted; at least a third of montane bird diversity is severely threatened. In a scenario of unconstrained VD, the location and structure of mountain systems emerge as a strong driver of extinction risk. Even unconstrained lateral movements offer little improvement to the fate of montane species in the Afrotropics, Australasia and Nearctic. Our results demonstrate the particular roles that the geography of species richness, the spatial structure of lateral and particularly vertical range extents and the specific geography of mountain systems have in determining the vulnerability of montane biodiversity to climate change. Our findings confirm the outstanding levels of biotic perturbation and extinction risk that mountain systems are likely to experience under global warming and highlight the need for additional knowledge on species'' vertical distributions, dispersal and adaptive capacities.  相似文献   

17.
An idea of plant functional types (PFTs) classification is brought forward based on the topographical pattern of plants, and a case study at Daloling region, lying in the northern part of Chinese subtropical zone, is presented. By means of extensive field study of the mountain forests, the quantitative attributes of the major 55 evergreen broadleaved tree species in the communities located at various topographical positions were acquired. The detrended canerical corre spondence analysis (DCCA) method was used to analyze: 1) The correlationships among the habitat temperature, moisture and illumination conditions and the 6 topographical attributes as elevation, mountain aspect, slope shape, slope position, slope direction and slope gradient of the habitat. 2) The diverse patterns of 55 species on the multidimensional topographical gradients. The scores of ordination were then used for a two way indicator species analysis (TWINSPAN) to the species. According to the results of previous analyses, the 55 evergreen broadleaved tree species at Dalaoling were classified into 10 PFTs. A discussion about the validity and limits of this PFTs accessing approach were given in the end.   相似文献   

18.
中越边境西隆山自然保护区的植物调查   总被引:1,自引:0,他引:1  
西隆山是滇南最高峰 ,最高海拔 3 0 74.3m ,跨越中越两国边境线。其北坡在中国境内 ,南坡在越南境内。西隆山 2 0 0 0年被列入国家级自然保护区。西隆山已经查明的高等植物 1 79个科 ,469个属 ,781种。其中 ,国家级保护植物和珍稀濒危植物有 2 3种。在西隆山分布的植被类型有 5种 :山地雨林、季风常绿阔叶林、山地苔藓常绿阔叶林、山顶苔藓矮林和次生植被。人为活动对植物多样性的影响很大 ,该文据此对保护措施提出了建议。  相似文献   

19.
香果树一直被认为是中国亚热带中山或低山地区的落叶阔叶林或常绿、落叶混交林中的伴生树种,作者于2010~2011年在陕西周至秦岭北坡进行植物资源调查时,首次发现其野生种群分布,在暖温带的秦岭北坡发现香果树属植物——香果树,将中国该种自然分布区的纬度向北推移了0.5°。  相似文献   

20.
We investigated the relative importance of metapopulation processes versus environmental conditions for the distribution of freshwater plants in 51 adjacent lakes in southern Sweden. Each lake was surveyed by snorkeling in a zigzag pattern over the littoral zone, and all aquatic vascular plants as well as water colour, Sphagnum -dominated shore, bottom substrate, littoral zone width and Secchi-depth were recorded. Data on lake area and altitude was taken from topographical maps. Multiple generalized linear regressions were used to test the significance of factors influencing species number and incidence of specific species in lakes. The best combination of predictor variables for species number was lake area (β=0.52), area of upstream lakes (β=0.23), and height above sea-level (β=−0.21) (whole model R2=0.52). The presence-absence patterns of most of the studied species were affected positively by connectivity, measured both as geographical proximity of the lakes and as connection to upstream lakes. The level of effect of connectivity on species incidence was also correlated with life history traits. The distributions of emergent species were less affected by connectivity than those of submerged and floating-leafed types, reflecting that emergent plants can occur in habitat patches surrounding the lakes. The results indicate that metapopulation processes affect the distribution of freshwater plants, but that their relative importance vary widely among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号