首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The aim of the present study was to explore the histogenesis of metaplastic cells in the human uterine cervix. In a previous study we demonstrated that squamous cervical metaplasia expresses a unique set of cytokeratin polypeptides different from that expressed by the various normal epithelial elements of both the exo- and endocervix. It was thus proposed that the formation of squamous metaplasia represented a new route of differentiation. In the present study we further investigated this aspect by expanding the battery of monoclonal antibodies directed against specific cytokeratin epitopes used for immunohistochemical labelling. The antibodies used were: KS-1 A3, which specifically stains cytokeratin polypeptide no. 13; antibody KS-2.1, which is an anti-cytokeratin reacting with pseudostratified transitional and some simple epithelia; and antibody KS-B17.2 reacting with cytokeratin polypeptide no. 18. Examination of the staining patterns obtained with these antibodies revealed specific staining of ciliated cells with antibody KS-2.1 and of endocervical reserve cells with antibody KS-1A3. In 6 out of 19 cases tested reserve cells were also stained with antibody KS-2.1. These results enabled us to distinguish between at least four types of cells residing within the simple epithelium of the endocervix, namely columnar nonciliated cells, ciliated cells, and two subpopulations of reserve cells. Since metaplasia was positively stained by antibodies KS-1A3 and KS-2.1, we propose that the endocervical reserve cells that express cytokeratin polypeptide no. 13 are most probably the cells from which endocervical metaplasia is derived.  相似文献   

2.
Immature female Wistar rats were treated with 1 mg of estradiol benzoate for 6 days. The injections were started on the 20th day of age; the animals were autopsied every 3 days after the last injection until the age of 45 days. Islets of hyperplastic cells and metaplasia area were seen in the endocervix in the majority of the animals autopsied. We have the expression of cytokeratin polypeptides in reserve cells, in areas exhibiting reserve cell hyperplasia and squamous metaplasia, using a panel of monoclonal cytokeratin antibodies. The reserve cells were positive for antibodies directed against stratified squamous epithelia, type cytokeratins No. 5, 13 and 17. In addition, hyperplastic cells revealed the presence of cytokeratins No. 7, 8, 18 and 19, specific for simple epithelia, but in a variable manner. The Squamous metaplasia cells exhibited cytokeratins No. 13, 18 and 19, but only weakly reactive. Our observations indicate that estrogen-induced endocervix metaplasia results from a transformation of reserve cells towards an epidermoid type epithelium. Hyperplasia would be the intermediate step in the mechanism of induced cervical metaplasia. This transformation is accompanied by the loss of cytoplasmic keratin proteins and the acquisition of new high molecular weight keratin proteins, specific for stratified squamous epithelia. The basal or reserve cells of the cervix can proliferate to produce regions of squamous cell metaplasia. It appears to be a direct effect of estrogen stimulation. Immunohistochemical staining for different molecular weight keratin proteins may be helpful in the evaluation of reserve cell differentiation.  相似文献   

3.
We determined the reactivity of two monoclonal antibodies to cytokeratins that are typically expressed in certain stratified epithelia and several human squamous cell carcinomas using immunoblotting techniques and immunofluorescence microscopy. Antibody KS 8.12 reacted specifically with cytokeratin polypeptides nos. 13 and 16, and stained noncornified squamous epithelia in a rather uniform way. The examination of diverse human carcinomas showed all squamous cell carcinomas to be positively stained with this antibody, whereas all adenocarcinomas were negative. Another antibody, KK 8.60, reacted with polypeptides nos. 10 and 11, and uniformly stained the suprabasal layers of the epidermis. In several noncornified squamous epithelia (e.g., tongue, exocervix), in thymus reticulum epithelial cells, and in moderately and well differentiated squamous cell carcinomas this antibody exhibited a nonuniform labeling pattern that allowed the detection of individual cytokeratin-10/11-positive cells scattered throughout the tissue. It is concluded that antibodies KS 8.12 and KK 8.60 represent specific molecular probes for the definition of certain stages of squamous differentiation in normal development as well as in pathological processes such as squamous metaplasia and carcinogenesis. We propose the use of these antibodies in the differential diagnosis of carcinomas and their metastases.  相似文献   

4.
We have analyzed the expression of cytokeratin polypeptides in subcolumnar reserve cells of the human uterine endocervical mucosa and the other epithelial cells using immunoperoxidase and immunofluorescence microscopy as well as by applying two-dimensional gel electrophoresis to microdissected cytoskeletal preparations. Endocervical columnar cells were uniformly positive for antibodies directed against the simple epithelium-type cytokeratins nos. 7, 8, 18, and 19, while a variable proportion of these cells was stained by an antibody against cytokeratin no. 4. Reserve cells were not only positive for cytokeratins nos. 8 (weakly and variably) and 19 but were also decorated by antibody KA 1, which reacts with cytokeratins present in stratified squamous epithelia. This last antibody selectively decorated reserve cells even when they were flat and inconspicuous. Antibody KA 1 uniformly stained the ectocervical squamous epithelium, the basal cells of which were also decorated by antibodies directed against cytokeratins nos. 8 (weakly and variably) and 19. Ectocervical suprabasal cells were positive, to a variable extent, for antibodies against cytokeratins nos. 4, 10/11, and 13. Gel electrophoresis revealed the presence of squamous-type cytokeratins nos. 5 and 17 in reserve cell-rich, but not in reserve cell-free, endocervical mucosa. We also analyzed the distribution pattern of these cells, as revealed by antibody KA 1, in the endocervical mucosa of 26 uteri. In all the specimens examined reserve cells were present, but their numbers exhibited considerable variation. In some cases these cells were confined to small islets localized deep within the cervical canal and lacked any continuity with the squamous epithelium. The expression of cytokeratins nos. 5 and 17 in reserve cells indicates that these cells have undergone a low level of squamous differentiation. The additional expression of cytokeratins nos. 8 and 19 in these cells points to a relationship with simple epithelial cells. The present data would seem to favor the view that reserve cells originate in situ from the columnar epithelium; however, this would imply an acquisition of new differentiation properties.  相似文献   

5.
The various epithelial cells of the lower respiratory tract and the carcinomas derived from them differ markedly in their differentiation characteristics. Using immunofluorescence microscopy and two-dimensional gel electrophoresis of cytoskeletal proteins from microdissected tissues we have considered whether cytokeratin polypeptides can serve as markers of cell differentiation in epithelia from various parts of the human and bovine lower respiratory tract. In addition , we have compared these protein patterns with those found in the two commonest types of human lung carcinoma and in several cultured lung carcinoma cell lines. By immunofluorescence microscopy, broad spectrum antibodies to cytokeratins stain all epithelial cells of the respiratory tract, including basal, ciliated, goblet, and alveolar cells as well as all tumor cells of adenocarcinomas and squamous cell carcinomas. However, in contrast, selective cytokeratin antibodies reveal cell type-related differences. Basal cells of the bronchial epithelium react with antibodies raised against a specific epidermal keratin polypeptide but not with antibodies derived from cytokeratins characteristic of simple epithelia. When examined by two-dimensional gel electrophoresis, the alveolar cells of human lung show cytokeratin polypeptides typical of simple epithelia (nos. 7, 8, 18 and 19) whereas the bronchial epithelium expresses, in addition, basic cytokeratins (no. 5, small amounts of no. 6) as well as the acidic polypeptides nos. 15 and 17. Bovine alveolar cells also differ from cells of the tracheal epithelium by the absence of a basic cytokeratin polypeptide. All adenocarcinomas of the lung reveal a "simple-epithelium-type" cytokeratin pattern (nos. 7, 8, 18 and 19). In contrast, squamous cell carcinomas of the lung contain an unusual complexity of cytokeratins. We have consistently found polypeptides nos. 5, 6, 8, 13, 17, 18 and 19 and, in some cases, variable amounts of cytokeratins nos. 4, 14 and 15. Several established cell lines derived from human lung carcinomas (SK-LU-1, Calu -1, SK-MES-1 and A-549) show a uniform pattern of cytokeratin polypeptides (nos. 7, 8, 18 and 19), similar to that found in adenocarcinomas. In addition, vimentin filaments are produced in all the cell lines examined, except for SK-LU-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Multi-layered ("stratified") epithelia differ from one-layered ("simple") polar epithelia by various architectural and functional properties as well as by their cytoskeletal complements, notably a set of cytokeratins characteristic of stratified tissue. The simple epithelial cytokeratins 8 and 18 have so far not been detected in any stratified epithelium. Using specific monoclonal antibodies we have noted, in several but not all samples of stratified epithelia, including esophagus, tongue, exocervix, and vagina, positive immunocytochemical reactions for cytokeratins 8, 18, and 19 which in some regions were selective for the basal cell layer(s) but extended into suprabasal layers in others. In situ hybridization with different probes (riboprobes, synthetic oligonucleotides) for mRNAs of cytokeratin 8 on esophageal epithelium has shown, in extended regions, relatively strong reactivity for cytokeratin 8 mRNA in the basal cell layer. In contrast, probes to cytokeratin 18 have shown much weaker hybridization which, however, was rather evenly spread over basal and suprabasal strata. These results, which emphasize the importance of in situ hybridization in studies of gene expression in complex tissues, show that the genes encoding simple epithelial cytokeratins can be expressed in stratified epithelia. This suggests that continual expression of genes coding for simple epithelial cytokeratins is compatible with the formation of squamous stratified tissues and can occur, at least in basal cell layers, simultaneously with the synthesis of certain stratification-related cytokeratins. We also emphasize differences of expression and immunoreactivity of these cytokeratins between different samples and in different regions of the same stratified epithelium and discuss the results in relation to changes of cytokeratin expression during fetal development of stratified epithelia, in response to environmental factors and during the formation of squamous cell carcinomas.  相似文献   

7.
Cytokeratin expression in normal postnatal human thymus was studied immunohistochemically by using monoclonal antibodies against various cytokeratin polypeptides. An attempt was made to characterize cell populations giving rise to the cornified structures of Hassal's corpuscles. Monoclonal antibody KB-37, a marker of squamous epithelium basal cells, was applied to distinguish the earliest cells capable of undergoing squamous differentiation. Parts of the subcapsular epithelium were extensively stained with this reagent. This epithelium, like the basal layer of certain squamous epithelia, exibited a high incidence of cytokeratins 13 and 14, and pronounced expression of cytokeratin 19. Simple epithelium cytokeratins 8, 18, and 19 were present in the cortex. Scattered cells reacted with KB-37 antibody. All stellate epithelial cells in the medulla were positive for cytokeratin 19. Most of the medullar epithelial cells were positive for cytokeratins 13, 14 and 17 of complex epithelium, in contrast to the cortex, where only a few cells were positive for these cytokeratins. A significant proportion of the medullar cells was positive for KB-37 antigen. Cytokeratins 8 and 18 were expressed in single cells and in groups of cells surrounding Hassal's corpuscles. The outermost cells of these corpuscles were positive for cytokeratin 19 and KB-37. In the peripheral parts of Hassal's corpuscles, simple epithelium cytokeratins 7, 8, 18, and cytokeratins 4, 13, 14, and 17, characteristic of stratified nonkeratinizing epithelia, were coexpressed with keratinization-specific cytokeratins 10/11. The inner parts of the swirls were uniformly positive for cytokeratins was reduced.  相似文献   

8.
Summary Normal epithelial cell differentiation is charactezied by the production of distinct cytokeratin proteins. It is well known that epithelia of several organs show squamous metaplasia in a vitamin A-deficient status. It is not yet known whether these histological changes are concomitant with a change in cytokeratin expression. Therefore, 3-week-old female rats (BN/BiRij) were fed a vitamin A-deficient diet for 8 weeks. The cytokcratin expression in epithelia of various organs was monitored immunohistochemically during the induction of vitamin A deficiency. Therefore, monoclonal antibodies specific for human cytokeratin 4, 5, 5+8, 7, 10, 14, 18 and 19 were used. In a normal vitamin A status, the distributional pattern for the different cytokeratins in rats was similar to that reported for human tissue. No change in cytokeratin expression was seen in trachea, skin, liver and colon at any time point studied. Squamous metaplasia in urinary bladder and salivary glands was observed after six weeks on the vitamin A-deficient diet. This was concomitant with a substitution of cytokeratins 4, 5+8, 7, 18 and 19 by cytokeratin 10. The latter cytokeratin is specific for keratinzed squamous epithelium. A change in cytokeratin expression was observed in bladder, ureter, kidney, salivary glands, uterus and conjunctiva before histological alterations appeared. In conclusion, the changes in cytokeratin expression observed under vitamin A deficiency in epithelia in vivo are in agreement with those described in other studies for epithelial cells in vitro. The changes in cytokeratin expression and the subsequent differentiation into squamous cells occurs in basal cells of the bladder but not in transitional cells. Furthermore, histological alterations are preceded by changes in cytokeratin expression indicating that vitamin A status controls cytokeratin expression in vivo.  相似文献   

9.
Immunohistological analysis of human tissue using monoclonal antibodies against cytokeratins, which are confined to cells of epithelial origin, is a valuable technique. Using human epidermal keratins as antigen, we prepared monoclonal antibodies against cytokeratins (ZK1, ZK7, ZK61 and ZK99) and against a desmosomal protein (ZK31). Immunohistochemical staining of human skin sections using these antibodies showed a specific reaction with the epidermis: ZK1 stained the entire epidermis, ZK7 only the basal layer, ZK61 and ZK99 the suprabasal layers, and ZK31 the cellular interfaces. In order to test for antibody specificity, immunoblots with human epidermal and amnion epithelial cytokeratin polypeptides, as well as immunofluorescence microscopy of simple epithelia (glandular and simple columnar epithelia) were performed. ZK1, ZK61 and ZK99 reacted preferentially with cytokeratin polypeptides of stratified squamous epithelia and ZK7 recognized cytokeratins of stratified and simple epithelia. When the ZK antibodies were tested on mesothelial cells in pleural effusions, only ZK7 reacted with these cells. Biochemical analysis of cytokeratin accumulation in cells of primary and long-term cultures indicated that the cytokeratin pattern of mesothelial cells was quite unstable, while that of amnion epithelial cells showed only minor quantitative changes. The use of these antibodies to determine the epithelial origin of cells present in pleural effusions is proposed.  相似文献   

10.
The present study was directed towards the characterization of cell-specific histogenetic markers for the various epithelial elements of the adult and the developing guinea pig submandibular salivary gland. We have employed immunofluorescent labelling using three cytokeratin monoclonal antibodies, for which the polypeptide specificities towards guinea pig cytokeratins were determined. All the epithelial elements of the adult gland were positively labelled with two monoclonal antibodies, namely KG 8.13 ('broad spectrum' anti-cytokeratin) and antibody Ks B.18 (reactive with a simple cytokeratin-specific polypeptide of 49 X 10(3) Mr). Antibody KS 8.58 (reactive with a guinea pig cytokeratin polypeptide of 50 X 10(3) Mr) labelled the basal cells of the large ducts, as well as the myoepithelium. During development of the gland, the submandibular anlage and its primary and secondary branches with their terminal buds, were uniformly labelled with the three antibodies; however, the cytokeratin polypeptides reactive with antibody KS 8.58, which were apparently expressed in all cells of the developing ducts, gradually disappear from most of the ductal cells, starting at about 6 weeks of gestation, and remain only in the basal or reserve cells of the large ducts and the myoepithelium. These observations support the notion that the basal cells retain at least some of the properties of the embryonic glandular epithelium and could be considered as pluripotent reserve cells which may function as progenitors for other epithelial elements in the salivary glands epithelia.  相似文献   

11.
The expression patterns of individual cytokeratin polypeptides in foetal and adult human pancreatic tissues were examined using monoclonal antibodies. We demonstrated that human pancreatic epithelia in early stages of development (14 weeks of gestation) contain cytokeratins 7, 8, 18 and 19, which are typical of simple epithelia, as well as cytokeratin 4 and 17, which are characteristic of stratified epithelia. In the pancreatic ducts, most of these cytokeratins appeared to be expressed together. Cytokeratins 1, 5, 10, 13, 16 and 20 were not detectable. In contrast, the pancreatic parenchyma was only positive for cytokeratins 8 and 18, except a transient expression of cytokeratins 7 and 19 in pancreatic islets and acinar cells during the foetal development. A focal cytokeratin 7 staining of single acinar cells was seen in newborn and in adult islets. In the stromal tissue, vascular smooth muscle cells were partly reactive with cytokeratin 8 and 18 specific antibodies. The results are discussed in the light of differentiation-dependent changes in the expression of individual cytokeratin polypeptides in developing epithelia.  相似文献   

12.
Summary The expression patterns of individual cytokeratin polypeptides in foetal and adult human pancreatic tissues were examined using monoclonal antibodies. We demonstrated that human pancreatic epithelia in early stages of development (14 weeks of gestation) contain cytokeratins 7, 8, 18 and 19, which are typical of simple epithelia, as well as cytokeratin 4 and 17, which are characteristic of stratified epithelia. In the pancreatic ducts, most of these cytokeratins appeared to be expressed together. Cytokeratins 1, 5, 10, 13, 16 and 20 were not detectable. In contrast, the pancreatic parenchyma was only positive for cytokeratins 8 and 18, except a transient expression of cytokeratins 7 and 19 in pancreatic islets and acinar cells during the foetal development. A focal cytokeratin 7 staining of single acinar cells was seen in newborn and in adult islets. In the stromal tissue, vascular smooth muscle cells were partly reactive with cytokeratin 8 and 18 specific antibodies. The results are discussed in the light of differentiation-dependent changes in the expression of individual cytokeratin polypeptides in developing epithelia.  相似文献   

13.
Intermediate filament proteins of normal epithelia of the human and the bovine male urogenital tract and of certain human renal and bladder carcinomas have been studied by immunofluorescence microscopy and by two-dimensional gel electrophoresis of cytoskeletal fractions from microdissected tissue samples. The patterns of expression of cytokeratin polypeptides differ in the various epithelia. Filaments of a cytokeratin nature have been identified in all true epithelial cells of the male urogenital tract, including renal tubules and rete testis. Simple epithelia of renal tubules and collecting ducts of kidney, as well as rete testis, express only cytokeratin polypeptides nos. 7, 8, 18, and 19. In contrast, the transitional epithelia of renal pelvis, ureter, bladder, and proximal urethra contain, in addition to those polypeptides, cytokeratin no. 13 and small amounts of nos. 4 and 5. Most epithelia lining the human male reproductive tract, including those in the epididymis, ductus deferens, prostate gland, and seminal vesicle, synthesize cytokeratin no. 5 in addition to cytokeratins nos. 7, 8, 18, and 19 (cytokeratin no. 7 had not been detected in the prostate gland). Cytokeratin no. 17 has also been identified, but in very low amounts, in seminal vesicle and epididymis. The cytokeratin patterns of the urethra correspond to the gradual transition of the pseudostratified epithelium of the pars spongiosa (cytokeratins nos. 4, 5, 6, 13, 14, 15, and 19) to the stratified squamous epithelium of the fossa navicularis (cytokeratins nos. 5, 6, 10/11, 13, 15, and 19, and minor amounts of nos. 1 and 14). The noncornified stratified squamous epithelium of the glans penis synthesizes cytokeratin nos. 1, 5, 6, 10/11, 13, 14, 15, and 19. In immunofluorescence microscopy, selective cytokeratin antibodies reveal differential staining of different groups or layers of cells in several epithelia that may relate to the specific expression of cytokeratin polypeptides. Human renal cell carcinomas show a simple cytokeratin pattern consisting of cytokeratins nos. 8, 18, and 19, whereas transitional cell carcinomas of the bladder reveal additional cytokeratins such as nos. 5, 7, 13, and 17 in various proportions. The results shows that the wide spectrum of histological differentiation of the diverse epithelia present in the male urogenital tract is accompanied by pronounced changes in the expression of cytokeratin polypeptides and suggest that tumors from different regions of the urogenital tract may be distinguished by their cytokeratin complements.  相似文献   

14.
Three monoclonal antibodies, 1C7, 2D7 and 6B10, directed against cytokeratins of human esophagus were isolated and characterized by one- and two-dimensional gel electrophoresis and by immunohistochemical staining on sections of human epithelial tissues. In immunoblot experiments, antibodies of clones 1C7 (IgG2a) and 2D7 (IgG2b) react only with cytokeratin no. 13 of the acidic (type I) subfamily of cytokeratin polypeptides (Mr 54000; pI 5.1); antibodies of clone 6B10 (IgG1) detect only cytokeratin no. 4 (Mr 59000; pI 7.3) of the basic (type II) cytokeratin subfamily and allows the detection of this protein and possible degradation products at high sensitivity. In immunohistochemical staining all three antibodies stain non-cornifying squamous epithelium (e.g., tongue, esophagus, anus) and transitional epithelium of the bladder. Antibodies of clone 6B10 also stain cells in certain ciliated pseudostratified epithelia and ductal epithelia of various exocrine glands. These monoclonal antibodies are the first examples of antibodies specific for individual cytokeratin polypeptides characteristic of certain complex epithelia. They allow the identification of distinct minor populations of cells present in certain complex and glandular epithelia and in tumors derived therefrom which hitherto have not been distinguished. The possible reasons for the occurrence of cell type heterogeneity of cytokeratin expression in complex epithelia and in some carcinomas are discussed.  相似文献   

15.
A number of human cytokeratins are expressed during the development of stratified epithelia from one-layered polar epithelia and continue to be expressed in several adult epithelial tissues. For studies of the regulation of the synthesis of stratification-related cytokeratins in internal tissues, we have prepared cDNA and genomic clones encoding cytokeratin 4, as a representative of the basic (type II) cytokeratin subfamily and cytokeratin 15, as representative of the acidic (type I) subfamily, and determined their nucleotide sequences. The specific expression of mRNAs encoding these two polypeptides in certain stratified tissues and cultured cell lines is demonstrated by Northern blot hybridization. Hybridization in situ with antisense riboprobes and/or synthetic oligonucleotides shows the presence of cytokeratin 15 mRNA in all layers of esophagus, whereas cytokeratin 4 mRNA tends to be suprabasally enriched, although to degrees varying in different regions. We conclude that the expression of the genes encoding these stratification-related cytokeratins starts already in the basal cell layer and does not depend on vertical differentiation and detachment from the basal lamina. Our results also show that simple epithelial and stratification-related cytokeratins can be coexpressed in basal cell layers of certain stratified epithelia such as esophagus. Implications of these findings for epithelial differentiation and the formation of squamous cell carcinomas are discussed.  相似文献   

16.
Epithelial cells contain a cytoskeletal system of intermediate-sized (7 to 11 nm) filaments formed by proteins related to epidermal keratins (cytokeratins). Cytoskeletal proteins from different epithelial tissues (e.g. epidermis and basaliomas, cornea, tongue, esophagus, liver, intestine, uterus) of various species (man, cow, rat, mouse) as well as from diverse cultured epithelial cells have been analyzed by one and two-dimensional gel electrophoresis. Major cytokeratin polypeptides are identified by immunological cross-reaction and phosphorylated cytokeratins by [32P]phosphate labeling in vivo.It is shown that different epithelia exhibit different patterns of cytokeratin polypeptides varying in molecular weights (range: 40,000 to 68,000) and electrical charges (isoelectric pH range: 5 to 8.5). Basic cytokeratins, which usually represent the largest cytokeratins in those cells in which they occur, have been found in all stratified squamous epithelia examined, and in a murine keratinocyte line (HEL) but not in hepatocytes and intestinal cells, and in most other cell cultures including HeLa cells. Cell type-specificity of cytokeratin patterns is much more pronounced than species diversity. Anatomically related epithelia can express similar patterns of cytokeratin polypeptides. Carcinomas and cultured epithelial cells often continue to synthesize cytokeratins characteristic of their tissue of origin but may also produce, in addition or alternatively, other cytokeratins. It is concluded: (1) unlike other types of intermediate-sized filaments, cytokeratin filaments are highly heterogeneous in composition and can contain basic polypeptides: (2) structurally indistinguishable filaments of the same class, i.e. cytokeratin filaments, are formed, in different epithelial cells of the same species, by different proteins of the cytokeratin family; (3) vertebrate genomes contain relatively large numbers of different cytokeratin genes which are expressed in programs characteristic of specific routes of epithelial differentiation; (4) individual cytokeratins provide tissue- or cell type-specific markers that are useful in the definition and identification of the relatedness or the origin of epithelial and carcinoma cells.  相似文献   

17.
Epithelial cells contain a class of intermediate-sized filaments formed by proteins related to epidermal alpha-keratins ('cytokeratins'). Different epithelia can express different combinations of cytokeratin polypeptides widely varying in apparent mol. wt. (40 000-68 000) and isoelectric pH (5.0-8.5). We have separated, by two-dimensional gel electrophoresis, cytokeratin polypeptides from various tissues and cultured cells of man, cow, and rodents and examined their relatedness by tryptic peptide mapping. By this method, a subfamily of closely related cytokeratin polypeptides has been identified which comprises the relatively large (greater than or equal to mol. wt. 52 500 in human cells) and basic (pH greater than or equal to 6.0) polypeptides but not the smaller and acidic cytokeratins. In all species examined, the smallest polypeptide of this subfamily is cytokeratin A, which is widespread in many simple epithelia and is the first cytokeratin expressed during embryogenesis. This cytokeratin polypeptide subfamily is represented by at least one member in all epithelial and carcinoma cells examined, indicating that polypeptides of this subfamily serve an important role as tonofilament constitutents . Diverse stratified epithelia and tumours derived therefrom contain two or more polypeptides of this subfamily, and the patterns of expression in different cell types suggest that some polypeptides of this subfamily are specific for certain routes of epithelial differentiation.  相似文献   

18.
The stratified squamous epithelium of the oral gingiva and the hard palate is characterized by a tissue architecture and a cytoskeletal composition similar to, although not identical with, that of the epidermis and fundamentally different from that of the adjacent non-masticatory oral mucosa. Using immunocytochemistry with antibodies specific for individual cytokeratins, in situ hybridization and Northern blots of RNA with riboprobes specific for individual cytokeratin mRNAs, and gel electrophoresis of cytoskeletal proteins of microdissected biopsy tissue samples, we show changes in the pattern of expression of cytokeratins and their corresponding mRNAs in pathologically altered oral gingiva. Besides a frequently, although not consistently, observed increase in the number of cells producing cytokeratins 4 and 13 (which are normally found as abundant components in the sulcular epithelium and the alveolar mucosa but not in the oral gingiva) and a reduction in the number of cells producing cytokeratins 1, 10 and 11, the most extensive change was noted for cytokeratin 19, a frequent cytokeratin in diverse one-layered and complex epithelia. While in normal oral gingiva cytokeratin 19 is restricted to certain, sparsely scattered cells of --or near--the basal cell layer, probably neuroendocrine (Merkel) cells, in altered tissue of inflamed samples it can appear in larger regions of the basal cell layer(s) and, in apparently more advanced stages, also in a variable number of suprabasal cells. Specifically, our in situ hybridization experiments show that this altered suprabasal cytokeratin 19 expression is more extended at the mRNA than at the protein level, indicating that cytokeratin 19 mRNA synthesis may be a relatively early event during the alteration. These changes in cytokeratin expression under an external pathological influence are discussed in relation to other factors known to contribute to the expression of certain cytokeratins and with respect to changes occurring during dysplasia and malignant transformation of oral epithelia.  相似文献   

19.
Cytokeratin polypeptides of human epidermis, of epithelia microdissected from various zones of the pilosebaceous tract (outer root-sheath of hair follicle, sebaceous gland), and of eccrine sweat-glands have been separated by one- and two-dimensional gel electrophoresis and characterized by binding of cytokeratin antibodies and by peptide mapping. The epithelium of the pilosebaceous tract has three major keratin polypeptides in common with interfollicular epidermis (two basic components of mol wts 58,000 and 56,000 and one acidic polypeptide of mol wt 50,000); however, it lacks basic keratin polypeptides in the mol wt range of 64,000-68,000 and two acidic keratin-polypeptides of mol wts 56,000 and 56,500 and contains an additional characteristic acidic cytokeratin of mol wt 46,000. Another cytokeratin polypeptide of mol wt 48,000 that is prominent in hair-follicle epithelium is also found in nonfollicular epidermis of foot sole. Both epidermis and pilosebaceous tract are different from eccrine sweat-gland epithelium, which also contains two major cytokeratins of mol wts 52,500 and 54,000 (isoelectric at pH 5.8-6.1) and a more acidic cytokeratin of mol wt 40,000. A striking similarity between the cytokeratins of human basal-cell epitheliomas and those of the pilosebaceous tract has been found: all three major cytokeratins (mol wts 58,000; 50,000; 46,000) of the tumor cells are also expressed in hair-follicle epithelium. The cytokeratin of mol wt 46,000, which is the most prominent acidic cytokeratin in this tumor, is related, by immunological and peptide map criteria, to the acidic keratin-polypeptides of mol wts 48,000 and 50,000, but represents a distinct keratin that is also found in other human tumor cells such as in solid adamantinomas and in cultured HeLa cells. The results show that the various epithelia present in skin, albeit in physical and ontogenic continuity, can be distinguished by their specific cytokeratin-polypeptide patterns and that the cytoskeleton of basal-cell epitheliomas is related to that of cells of the pilosebaceous tract.  相似文献   

20.
A monoclonal antibody derived from a mouse immunized with bovine epidermal prekeratin has been characterized by its binding to cytoskeletal polypeptides separated by one- or two-dimensional gel electrophoresis and by immunofluorescence microscopy. This antibody (KG 8.13) binds to a determinant present in a large number of human cytokeratin polypeptides, notably some polypeptides (Nos. 1, 5, 6, 7, and 8) of the 'basic cytokeratin subfamily' defined by peptide mapping, as well as a few acidic cytokeratins such as the epidermis-specific cytokeratins Nos. 10 and 11 and the more widespread cytokeratin No. 18. This antibody reacts specifically with a wide variety of epithelial tissues and cultured epithelial cells, in agreement with previous findings that at least one polypeptide of the basic cytokeratin subfamily is present in all normal and neoplastic epithelial cells so far examined. The antibody also reacts with corresponding cytokeratin polypeptides in a broad range of species including man, cow, chick, and amphibia but shows only limited reactivity with only a few rodent cytokeratins. The value of this broad-range monoclonal antibody, which apparently recognizes a stable cytokeratin determinant ubiquitous in human epithelia, for the immunohistochemical identification of epithelia and carcinomas is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号