首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The opioid nature of kentsin (Thr-Pro-Arg-Lys) and its ability to alter pain perception and intestinal transit were examined. Kentsin (30,000 nM) did not inhibit electrically stimulated contractions of the guinea pig ileum (GPI) or mouse vas deferens (MVD), nor did it cause a rightward displacement of the inhibitory concentration-response curves of the mu-selective opioid agonist PL017 in the GPI or the delta-selective agonist DPDPE in the MVD. Kentsin (10,000 nM) did not displace [3H] naloxone from rat brain homogenates. These results indicate that kentsin lacks opioid agonist and mu and delta opioid antagonist properties and does not bind to opioid receptors. In vivo, kentsin produced dose-dependent analgesia in both the hotplate and abdominal stretch tests when administered intracerebroventricularly (ICV) and intrathecally but not intravenously. The central analgesic effect of kentsin was partially antagonized by the opioid antagonist naloxone. Kentsin inhibited intestinal transit in a dose-dependent manner after ICV administration only. The intestinal antitransit effect of kentsin was not blocked by pretreatment with naloxone. These results suggest that kentsin acts centrally to produce both opioid and non-opioid effects. Further, the opioid-mediated analgesic effects of kentsin involve mechanisms other than direct interaction with opioid receptors.  相似文献   

2.
These studies examined the effect of cocaine on the analgesia produced by systemically and centrally administered opioid agonists. Cocaine (50 mg/kg, s.c.) increased the analgesic potency of systemic, ICV and IT morphine; and the ICV and IT analgesic effects of the delta selective peptide, [D-Pen2,D-Pen5]enkephalin (DPDPE). Cocaine also increased the analgesic potency of the mu selective ligand [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAGO) administered ICV. However, cocaine did not alter the ED50 for IT DAGO. GC-MS studies indicated that brain cocaine concentration was approximately 3.0 micrograms/g wet weight 45 min following s.c. administration. These results suggest that cocaine-induced increases in opioid analgesic potency are mediated at brain mu and delta receptors and spinal mu receptors. Furthermore, there might be functional differences between spinal and supraspinal sites at which DAGO produces analgesia.  相似文献   

3.
L Bueno  J Fioramonti 《Peptides》1986,7(1):73-77
Gastrointestinal motor activity following intracerebroventricular (ICV) and intravenous (IV) administration of corticotropin releasing factor (CRF), corticotropin (ACTH) and cortisol was investigated in fasted dogs with strain-gauge transducers chronically implanted on the antrum and proximal jejunum. ICV but not IV administration of CRF (20 to 100 ng/kg) suppressed the gastric cyclic migrating motor complex (MMC) for 3 to 6 hours without affecting the jejunum. Similar disruptive effects on the gastric MMC were observed after ICV administration of ACTH (0.5 U/kg) or cortisol (0.1 micrograms/kg) but not after IV administration of 10 times higher doses. These results suggest that in dog CRF may be involved in the central control of the interdigestive gastric motility, these effects were not probably due to the release of ACTH and cortisol the other hormones of the pituitary adrenocortical system change the gastric motility when centrally administered through a possible feed-back mechanism affecting brain CRF level.  相似文献   

4.
M P Primi  L Bueno 《Peptides》1987,8(4):619-623
The effects of intracerebroventricular (ICV) administration of somatostatin (SRIF) and two related peptides, anti SRIF and SMS 201-995, on jejunal fluxes of water, Na+ and K+ were investigated in dogs prepared with a Thiry-Vella (TV) loop. Intestinal transport in the TV loop and concomitant transit time were also measured during infusion (2 mg/min) of an isotonic electrolyte solution and phenol-red bolus injections. Basal net water absorption was reduced significantly (p less than 0.01) over periods of 2 to 5 hr and in a dose-related manner, with ICV administrations of SRIF (5 to 100 ng/kg); doses of SRIF, 5 to 25 times higher but administered IV, were inactive. Similar reductions in the net fluxes of water, Na+ and K+ were observed over 2 to 5 hr following ICV administration of a putative somatostatin antagonist and SMS 201-995 at doses of 100 ng/kg. Neither metoclopramide (1 mg/kg), phentolamine (0.1 mg/kg) nor methysergide (0.2 mg/kg) given IV were able to antagonize the effects of centrally administered SRIF (100 ng/kg) on intestinal fluxes. In contrast, the effects of SRIF were abolished completely by naloxone (0.2 mg/kg) but not methyl-naloxone (0.3 mg/kg) given systemically. It is concluded that somatostatin and the two related peptides act centrally to reduce jejunal absorption of water and electrolytes. The effects of SRIF appear to be related to opiate receptors, possible involving central nerve pathways which utilize opiate-like transmitters.  相似文献   

5.
The effects of intracerebroventricular (ICV) vs. intravenous (IV) injection of neurotensin, substance P and calcitonin on intestinal myoelectrical activity were examined in fed rats. ICV administered neurotensin and calcitonin restored the ‘fasted’ pattern of intestinal activity, i.e. the migrating myoelectric complex (MMC) at a dose as low as 12 and 0.2 pmol, respectively, whereas substance P only reduced significantly (P < 0.01) the duration of the postprandial pattern when injected ICV (48 pmol).Administered systemically at doses 100 times higher than the smallest active doses by the ICV route, calcitonin induced a fasted pattern, while neurotensin and substance P did not modify the fed pattern.The effects of ICV administration of neurotensin and calcitonin were abolished after vagotomy but the shortening effect of substance P on the duration of the postprandial pattern was still present.It is concluded that these three neuropeptides act centrally to control the pattern of intestinal motility in fed rats by shortening the ‘fed’ pattern for substance P and by restoring the MMC pattern for calcitonin and neurotensin, this last effect being mediated by the vagus.  相似文献   

6.
L W Rogers  J Giordano 《Life sciences》1990,47(11):961-969
We have recently shown the serotonin 5-HT1A receptor agonist buspirone to produce analgesia in several pain tests in rats. As a 5-HT1A agonist, buspirone may change serotonergic (5-HT) tone to alter the balance of central monoaminergic (MA) systems that function in analgesia. MA-reuptake blocking drugs have been shown to produce analgesia, both when given alone and in combination with a variety of other agents, presumably via their action upon MA neurochemistry. The present study was undertaken to examine the effect of systemic administration of the 5-HT-reuptake blocker amitriptyline (AMI: 10 mg/kg), NE-reuptake blocker desipramine (DMI: 10 mg/kg) or DA-reuptake blocker GBR-12909 (7.5 mg/kg) on patterns of analgesia produced by buspirone (1-5 mg/kg) in thermal and mechanical pain tests in rats. Neither reuptake blocking agents or buspirone, when administered alone or in combination, produced overt changes in motor activity at the doses tested. AMI alone was not analgesic in either thermal or mechanical pain tests. In both assays, AMI reduced the analgesic action of buspirone, with greater effects seen in the thermal test. When administered alone, DMI produced significant analgesia against thermal and mechanical pain. DMI significantly attenuated the analgesic action of all doses of buspirone in both pain tests. Alone, GBR-12909 did not affect nociception in thermal or mechanical tests. GBR-12909 decreased buspirone-induced analgesia at all doses in the thermal test, while having no effect on buspirone-induced analgesia against mechanical pain. These results demonstrate that facilitation of 5-HT, NE and DA function with reuptake blocking drugs did not enhance the analgesic action of buspirone. These data indicate against the adjuvant use of reuptake blocking compounds and buspirone as analgesics. Furthermore, such findings may suggest other possible non-MA substrates of buspirone-induced analgesia.  相似文献   

7.
M Jiménez  L Buéno 《Life sciences》1990,47(3):205-211
The effects of NPY on CRF and stress-stimulated cecal motility were investigated by electromyography in rats. Intracerebroventricular (ICV) injection of NPY at 300 ng/kg significantly reduced the frequency of spike burst during the first 15 minutes after its administration while no effect was observed at a lower dose (150 ng/kg). Exposure to mental stress (MS) increased significantly (p less than 0.01) during 45 minutes, the frequency of cecal spike bursts. NPY (300 ng/kg) injected ICV, 30 minutes prior to MS periods abolished the excitatory effect induced by stress. The frequency of cecal spike bursts was also increased during the first 15-minutes following ICV injection of CRF (300 ng/kg). Prior (5 min) ICV administration of NPY (150 ng/kg) abolished the stimulatory effect of CRF on cecal motility. It is concluded that central administration of NPY suppresses the stress-induced cecal motor response probably by inhibiting the pathways involved in CRF mediation of these effects.  相似文献   

8.
Islet amyloid polypeptide (IAPP) is postulated to act as a hormonal signal from the pancreas to the brain to inhibit food intake and reduce adipose energy reserves. The present study compared the effects of chronic peripheral and chronic central administration of IAPP on food intake and meal pattern in rats. IAPP was administered subcutaneously (SC) for 7 days at doses of 0, 0.25, 2.5 and 25 pmol kg(-1) min(-1) using an osmotic minipump or administered centrally at doses of 0, 0.025, 0.25 and 2.5 pmol kg(-1) min(-1) using an osmotic minipump connected to an intracerebroventricular (ICV) catheter inserted into the third ventricle. Both SC and ICV infusion decreased total food intake dose-dependently. The minimal effective dose was 2.5 pmol IAPP kg(-1) min(-1) for SC administration and 0.25 pmol kg(-1) min(-1) for ICV infusion. The decrease in food intake produced by infusion of IAPP was mainly due to decreased meal size, although a significant decrease in meal number also occurred at the highest SC and ICV doses. SC administration produced a larger, more persistent decrease in food intake during the light period than in the dark period, while ICV infusion caused a larger, more persistent decrease during the dark period. The 10-fold difference in minimal effective doses indicates that ICV-administered IAPP acted primarily in the brain to inhibit food intake. The difference between the effects of IAPP on meal pattern with the two methods of administration suggests that IAPP does not act on the same target(s) when administered centrally as it does when it is administered peripherally.  相似文献   

9.
C X Zhu  J R Yu 《生理学报》1989,41(4):410-415
The effect of intracerebroventricular (ICV) injections of thyrotropin releasing hormone (TRH) on the propulsive motility of the gastrointestinal tract was examined in rats. The distance travelled by charcoal meal through the small intestine, measured in terms of percentage of its total length, was recorded as the index of propulsive motility. The results were as follows: (1) The propulsive distance of charcoal meal was significantly reduced in a dose-dependent manner after ICV injections of TRH (1 microgram/10 microliters, 5 micrograms/10 microliters or 10 micrograms/10 microliters) (P less than 0.01-0.001) The effects were abolished by injection of atropine (5 micrograms/10 microliters ICV). (2) The gastrointestinal propulsive motility decreased markedly (P less than 0.01) after injection of a larger dose of TRH (50 micrograms/100 g) into the hypodermis. The effects were not completely blocked by subcutaneous injections of propranolol (5 mg/kg). (3) No effects (P greater than 0.05) were found on the inhibition of gastrointestinal propulsive motility after ICV injections of regitine (2.5 mg/kg im, 50 micrograms/50 microliters ICV) or propranolol (5 mg/kg im, 50 micrograms/50 microliters ICV). The results indicate that TRH has an inhibitory effect on the propulsive motility of gastrointestinal tract, which may be mediated via the non-adrenergic inhibitory nerve of the vagal nerves.  相似文献   

10.
Short-term effects of hypothalamic releasing factors on feeding behavior and digestive motility patterns were assessed in hay-fed sheep trained to eat more than half the total amount eaten over 8 h within the first 3 h after food presentation. Thyrotropin-releasing hormone (TRH) given intracerebroventricularly (ICV, 30 ng/kg) or intravenously at higher doses (IV, 3 micrograms/kg) reduced food consumption by 20 p. cent. The ICV or IV TRH-induced reduction was associated with behavioral excitation and stimulation of antroduodenal motor activity without changes in water intake. The ovine corticotropin releasing factor (oCRF 41) decreased food and water intake by 30-50% when administered ICV (60 ng/kg) but was not active when given systemically at doses up to 6 micrograms/kg. The synthetic human growth hormone releasing factor (hGRF 44) administered centrally (60 ng/kg) increased the amount of food intake and the antral motor activity without behavioral excitation. The results indicate a centrally-mediated facilitation of food intake by GRF and its inhibition by CRF which also affect water consumption. The presence of digestive motor effects suggests that extrapituitary pathways may be involved, as for TRH, in the action of both GRF and CRF.  相似文献   

11.
L Bueno  J Fioramonti  M P Primi 《Peptides》1985,6(3):403-407
The effects of intracerebroventricular (ICV) and intravenous (IV) administration of human pancreatic growth hormone-releasing factor (hpGRF) on gastro-intestinal motility were examined in fasted and fed conscious dogs equipped with chronically implanted strain-gauges on the antrum and the jejunum. During the fasted state, hpGRF injected ICV at 0.1 micrograms . kg-1 or IV at 0.5 micrograms . kg-1 did not affect the cyclic occurrence of the migrating motor complex (MMC). This pattern was normally disrupted for 8-10 hours by a daily standard meal. Injected ventricularly (0.1 micrograms . kg-1) but not intravenously (0.5 micrograms . kg-1) 10-15 min after the daily meal, hpGRF significantly reduced (p less than 0.01) the duration of the jejunal fed pattern (2.0 +/- 1.4 vs. 8.4 +/- 1.1 hours for control) but not that of the stomach. This effect persisted when hpGRF (0.1 micrograms . kg-1 ICV) was administered after indomethacin (2 mg . kg-1 IM), naltrexone (0.1 mg . kg-1 IV) or domperidone (1 mg . kg-1 IV) but was abolished by a previous IV injection of metoclopramide (1 mg . kg-1). It was concluded that hpGRF is able to act centrally to control the pattern of jejunal motility in fed but not in fasted dog, its effect being probably mediated through dopaminergic pathways.  相似文献   

12.
The effect of 50 ug/kg prostaglandin F2a (PGF2a) was compared with 250 ug/kg PGF2a on uterine motility in the diestrous female. Microtipped pressure transducers were surgically implanted in the uteri of 6 females at 30 days diestrus and in 6 females at 60 days diestrus. Uterine responses to intravenous PGF2a (5 ug/kg), oxytocin (0.05 USP units/kg), and intramuscular PGF2a (50 ug/kg and 250 ug/kg) were measured in the awake females on Days 1 and 2 after implantation. There was no significant difference in the increase in intrauterine pressure produced by 50 ug/kg of PGF2a compared with 250 ug/kg of PGF2a. The longest duration of the effect occurred when 250 ug/kg of PGF2a were given. Side effects were also documented. Significantly more vomiting occurred when 250 ug/kg PGF2a were given than when 50 ug/kg PGF2a were administered. The only advantage to using a higher dosage of PGF2a appears to be the longer duration of motility.  相似文献   

13.
The effects of intracerebroventricular (ICV) and intrathecal (IT) administration of calcitonin gene-related peptide (CGRP) on intestinal motility were examined in conscious rats chronically fitted with intraparietal electrodes in the duodeno-jejunum and a cannula in a cerebral lateral ventricle or catheter in the subarachnoid space. ICV administration of CGRP (0.5–10 μg) restores the fasted pattern of intestinal motility in fed rats in a dose-related manner. Intrathecal administration of CGRP or calcitonin also induces fasted pattern but after a 30 min delay. These effects persisted after transection of the spinal cord and no change in intestinal motility appeared after intravenous administration of CGRP at a dose effective when given IT. This study suggests that CGRP, as calcitonin, has a neuromodulatory role in the control of intestinal motility at both brain and spinal cord levels.  相似文献   

14.
Vasopressin analgesia: specificity of action and non-opioid effects   总被引:4,自引:1,他引:3  
J H Kordower  R J Bodnar 《Peptides》1984,5(4):747-756
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VP) increases pain thresholds. In the present study intracerebroventricular (ICV) administration of both arginine VP (AVP: 75-500 ng) and 1-deamino-8-D-arginine vasopressin (DDAVP: 150-500 ng) elevated tail flick latencies. Oxytocin (OXY, ICV), also elevated tail-flick latencies (150-1000 ng); however this increase was accompanied by "barrel-roll" seizure activity. VP analgesia was eliminated by pretreatment with 1-deamino-penicillamine-2(O-methyl)tyrosine-AVP (dPTyr(me)AVP: 500 ng, ICV), a VP antagonist, but not naloxone (1 or 10 micrograms, ICV), suggesting that VP modulates nonciceptive thresholds through its own binding sites. Conversely, pretreatment with naloxone (1 micrograms, ICV) but not dPTyr(me)AVP (1 microgram, ICV) attenuated the analgesic efficacy of systemic morphine (10 mg/kg), further dissociating VP and central opiate analgesic processes. Finally, systemic pretreatment with dexamethasone potentiated VP analgesia. These data support the notion that VP is a specific non-opioid pain inhibitor.  相似文献   

15.
G Katsuura  S Hsiao  S Itoh 《Peptides》1984,5(3):529-534
An open field apparatus was used to assess the effect of proglumide, a selective antagonist of cholecystokinin octapeptide (CCK-8), to block the behavioral effect of CCK-8 in rats. Intracerebroventricular (ICV) injection of CCK-8 (0.5 to 2 micrograms) was effective in suppressing general exploratory activities and this effect was blocked by proglumide at doses of 2 to 5 micrograms administered ICV or 1 mg/kg administered subcutaneously. The effect of peripherally administered CCK-8 (10 micrograms/kg) was blocked by peripherally administered proglumide at a dose of 2 mg/kg but not by centrally administered proglumide at a dose of 5 micrograms/rat. The behavioral effect of CCK-8 was thus clearly blocked by proglumide.  相似文献   

16.
M Gue  L Bueno 《Peptides》1991,12(3):523-527
The influence of central vs. peripheral administration of specific type A and type B CCK receptor antagonists (L364,718 and L365,260, respectively) on colonic motor hyperactivity induced by feeding and CCK8 was investigated in dogs with strain-gauge transducers implanted on the proximal and transverse colon. Intravenous injection of L364,718 (5 and 10 micrograms/kg) reduced by 26.2% and 80.1%, respectively, the 0-4-h postprandial increase in colonic motor index; at similar doses L365,260 had no effect. Intracerebroventricular administration of L364,718, at a dose (1 microgram/kg) not active by the IV route, significantly reduced (p less than 0.01) by 67.5% the feeding-induced colonic hyperactivity. In contrast, L365,260 (1-10 micrograms/kg ICV) injected was inactive. Increase in colonic motility produced by intravenous CCK8 infusion (1 microgram/kg/h) was suppressed by previous ICV and IV administration of L364,718 at doses of 1 and 10 micrograms/kg, respectively, while L365,260 was inactive at similar doses. It is concluded that CCK8 released after a meal is responsible for the postprandial increase in colonic motility and that these effects may be mediated through activation of central CCKA receptors.  相似文献   

17.
The effects of intracerebroventricular (ICV) administration of neurotensin (NT) before a meal on intestinal postprandial motility were examined in conscious rats chronically fitted with intraparietal Nichrome electrodes in the duodeno-jejunum. The effects were compared with those of two analogues, [D-Tyr11]NT and [D-Trp11]NT, resistant to degradation by brain peptidases. NT (10 μg ICV) delayed the occurrence of postprandial disruption of duodenal motility and blocked it on the jejunum. [D-Tyr11]NT and [D-Trp11]NT (1 μg ICV) elicited the same effects but at a ten-fold lower dose. NT administered peripherally just before a meal significantly lengthened the duration of the postprandial motor pattern. The central effect of NT on the fed pattern involved dopaminergic neurons as it was mimicked by dopamine, blocked by haloperidol and partly antagonized by either sulpiride or (+) SCH 23390. It is concluded that: 1) both D1 and D2 receptors are involved in the blocking effect of the postprandial disruption induced by central NT; 2) that [D-Tyr11]NT and [D-Trp11]NT are potent agonists at NT receptors in the brain.  相似文献   

18.
Dermorphin, injected intracerebroventricularly (ICV) to rats, provokes, like to morphine, an inhibition of intestinal propulsion linearly related to the log of the administered doses (in the range from 0.06 to 0.56 μg/rat), but it is 143 times more active than morphine. Naloxone, ICV or IP, antagonizes dermorphin less effectively than morphine. Quaternary naloxone ICV administered antagonizes the intestinal effect of ICV dermorphin, while IP administered it is not effective until 8 mg/kg. The dose of dermorphin maximally active by the ICV route (0.56 μg/rat) is completely inactive when injected IP. Increasing doses of dermorphin IP (from 12 to 6400 μg/kg) inhibit intestinal propulsion to the same extent irrespectively of the doses employed, but never by more than 50%. Only a high dose of naloxone (30 mg/kg/IP) antagonizes this IP effect. The central and peripheral components of this intestinal effect of dermorphin are discussed.  相似文献   

19.
Intracerebroventricular (ICV) injection of streptozotocin (STZ) causes cognitive impairment in rats. ICV STZ is known to impair cholinergic neurotransmission by decreasing choline acetyltransferase (ChAT) levels, glucose and energy metabolism in brain and synthesis of acetyl CoA. However, no reports are available regarding the cholinesterase inhibitors in this model. In aging brain, reduced energy metabolism increases glutamate release, which is blocked by L-type calcium channel blockers. These calcium channel blockers have shown beneficial effects on learning and memory in various models of cognitive impairment. The present study was designed to investigate the influence of chronic administration of donepezil (cholinesterase inhibitor, 1 and 3 mg/kg) and lercanidipine (L-type calcium channel blocker, 0.3 and 1 mg/kg) on cognitive impairment in male Sprague-Dawley rats injected twice with ICV STZ (3 mg/kg) bilaterally on days 1 and 3. ICV STZ injected rats developed a severe deficit in learning and memory indicated by deficits in passive avoidance paradigm and elevated plus maze as compared to control rats. Cholinesterase activity in brain was significantly increased in ICV STZ injected rats. Donepezil dose-dependently inhibited cholinesterase activity and improved performance in memory tests at both the doses. Lercanidipine (0.3 mg/kg) showed significant improvement in memory. When administered together, the effect of combination of these two drugs on memory and cholinesterase activity was higher than that obtained with either of the drugs when used alone.  相似文献   

20.
Corticotropin-releasing factor (CRF) participates in development of stress-induced analgesia. Midbrain periaqueductal grey matter (MPAG) is one of crucial structures of the brain antinociceptive system. The aim of the study was to investigate effects of the CRF administration into the MPAG on pain sensitivity in alert rats and contribution of opioid mechanisms to these CRF-induced effects. Somatic pain sensitivity was tested by tail flick response latency following thermal stimuli. The opioid antagonist naltrexone administered systemically or centrally into the MPAG was used to study involvement ofopioid mechanisms in the CRF-induced effects. The CRF administration (0.7 microg/rat) into the MPAG caused analgesic effect. The CRF-induced analgesic effects were eliminated by systemic as well as central naltrexone pretreatment. Effect of central naltrexone on the CRF-induced analgesia manifested itself faster as compared with effect of systemic naltrexone. The data obtained suggest that one of central mechanisms of the CRF-induced analgesic effect on somatic pain sensitivity in alert rats may be mediated by the MPAG neurons and provided by involvement of opioid mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号