首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
Fibrin II induces endothelial cell capillary tube formation   总被引:11,自引:0,他引:11       下载免费PDF全文
We studied the formation of capillary tubes by endothelial cells which were sandwiched between two fibrin gels under serum-free conditions. After formation of the overlying fibrin gel, the endothelial cell monolayer rearranged into an extensive net of capillary tubes. Tube formation was apparent at 5 h and was fully developed by 24 h. The capillary tubes were vacuolated, and both intracellular and intercellular lumina were present. Maximal tube formation was observed with fibrin II (which lacks both fibrinopeptide A and B), minimal tube formation with fibrin I (which lacks only fibrinopeptide A), and complete absence of tube formation with fibrin 325 (which lacks the NH2- terminal beta 15-42 sequence, in addition to fibrinopeptides A and B). The inability of fibrin 325 to stimulate capillary tube formation supports the idea that beta 15-42 plays an important role in this process, and its importance was confirmed by the finding that exogenous soluble beta 15-42 inhibited fibrin II-induced capillary tube formation. This effect was specific for fibrin, since beta 15-42 did not inhibit tube formation by endothelial cells sandwiched between collagen gels. The interaction of the apical surface of the endothelial cell with the overlying fibrin II gel, as opposed to the underlying fibrin gel upon which the cells were seeded, was necessary for capillary tube formation. These studies suggest that the beta 15-42 sequence of fibrin interacts with a component of the apical cell surface and that this interaction plays a fundamental role in the induction of endothelial capillary tube formation.  相似文献   

2.
We have previously shown that the tumor promoter 4 beta-phorbol 12-myristate 13-acetate (PMA) induces capillary endothelial cells grown to confluency on the surface of three-dimensional collagen gels to invade the underlying matrix and to form capillary-like tubular structures, a phenomenon mimicking angiogenic processes that occur in vivo (Montesano and Orci: Cell, 42:469-477, 1985). Since angiogenesis frequently occurs within a fibrin-rich extracellular matrix, we have examined the ability of PMA-treated endothelial cells to invade fibrin gels. Control endothelial cells grown on fibrin gels formed a confluent monolayer on the gel surface and did not invade the underlying matrix. Treatment of the cultures with PMA resulted in a progressive lysis of the substrate without invasion of the fibrin matrix. However, if the cells were treated with PMA either in the presence of fibrinolytic inhibitors (Trasylol, epsilon-aminocaproic acid) or in the absence of detectable plasminogen, dissolution of the substrate was prevented, and the endothelial cells invaded the fibrin gel, forming vessel-like tubular structures similar to those previously observed with collagen gels. These results demonstrate that the invasive and morphogenetic events induced by PMA do not necessarily require an interaction between endothelial cells and collagen fibrils but can also occur with other biologically relevant substrata. They also suggest (1) that invasion may occur via a plasmin-independent mechanism and (2) that in vivo, neutralization of excess proteolytic activity may play an important permissive role in angiogenesis and other invasive processes by preventing uncontrolled matrix degradation.  相似文献   

3.
Various cell adhesion molecules mediate the diverse functions of the vascular endothelium, such as cell adhesion, neutrophil migration, and angiogenesis. In order to identify cell adhesion molecules important for angiogenesis, we used anin vitromodel (Chalupowicz, Chowdhury, Bach, Barsigian, and Martinez,J. Cell Biol.130, 207–215, 1995) in which human umbilical vein endothelial cell monolayers are induced to form capillary-like tubes when a second gel, composed of either fibrin or collagen, is formed overlying the apical surface. In the present investigation, we observed that a monoclonal antibody directed against the first extracellular domain of human vascular endothelial cadherin (VE-cadherin, cadherin 5) inhibited the formation of capillary tubes formed between either fibrin or collagen gels. Moreover, when added to preformed capillary tubes, this antibody disrupted the capillary network. In contrast, monoclonal antibodies directed against the extracellular domain of N-cadherin, the αvβ3integrin, and PECAM-1 failed to inhibit capillary tube formation. During capillary tube formation, Western blot and RT-PCR analysis revealed no marked change in VE-cadherin expression. Immunocytochemical studies demonstrated that VE-cadherin was concentrated at intercellular junctions in multicellular capillary tubes. Thus, VE-cadherin plays a specific role in fibrin-induced or collagen-induced capillary tube formation and is localized at areas of intercellular contact where it functions to maintain the tubular architecture. Moreover, its function at tubular intercellular junctions is distinct from that at intercellular junctions present in confluent monolayers, since only the former was inhibited by monoclonal antibodies.  相似文献   

4.
We have shown previously that the tumor promoter phorbol myristate acetate (PMA) induces capillary endothelial cells grown on the surface of three-dimensional collagen gels to invade the underlying matrix as capillary-like tubular structures, a phenomenon mimicking angiogenic processes that occur in vivo (Montesano and Orci: Cell 42:469, 1985). To establish whether the potential to invade the extracellular matrix as capillary-like sprouts is restricted to microvascular endothelial cells or is also shared by large vessel endothelium, we have examined the response to PMA of endothelial cells isolated from the human umbilical vein and the calf pulmonary artery. The results of these experiments show that both types of macrovascular endothelial cells are able to penetrate into collagen gels as vessel-like tubes following treatment with PMA. This demonstrates that endothelial cells derived from large vessels can, in response to appropriate signals, express invasive properties thought to be associated specifically with capillary endothelial cells in vivo.  相似文献   

5.
alpha(v)beta(3) antagonists are potent angiogenesis inhibitors, and several different classes of inhibitors have been developed, including monoclonal antibodies, synthetic peptides, and small organic molecules. However, each class of inhibitor works by the same principal, by blocking the binding of ligands to alpha(v)beta(3). In an effort to develop an alpha(v)beta(3) inhibitor that down-regulates the actual level of alpha(v)beta(3), we developed an antisense strategy to inhibit alpha(v)beta(3) expression in vitro. beta(3) antisense expressed in endothelial cells specifically down-regulated alpha(v)beta(3) and inhibited capillary tube formation, with the extent of down-regulation correlating with the extent of tube formation inhibition. This inhibition was matrix-specific, since tube formation was not inhibited in Matrigel. These findings support the notion that alpha(v)beta(3) is required for an essential step of angiogenesis in fibrin, namely capillary tube formation. These results suggest that pseudogenetic inhibition of beta(3) integrins using antisense techniques may ultimately provide a therapeutic means to inhibit angiogenesis in vivo.  相似文献   

6.
Differentiation of endothelial cells, i.e., formation of a vessel lumen, is a prerequisite for angiogenesis. The underlying molecular mechanisms are ill defined. We have studied a brain capillary endothelial cell line (IBEC) established from H-2Kb-tsA58 transgenic mice. These cells form hollow tubes in three-dimensional type I collagen gels in response to fibroblast growth factor-2 (FGF-2). Culture of IBEC on collagen gels in the presence of FGF-2 protected cells from apoptosis and allowed tube formation (i.e., differentiation) but not growth of the cells. FGF-induced differentiation, but not cell survival, was inhibited by treatment of the cells with an anti-beta1-integrin IgG. Changes in integrin expression in the collagen-gel cultures could not be detected. Rather, cell-matrix interactions critical for endothelial cell differentiation were created during the culture, as indicated by the gradual increase in tyrosine phosphorylation of focal adhesion kinase in the collagen-gel cultures. Inclusion of laminin in the collagen gels led to FGF-2-independent formation of tube structures, but cells were not protected from apoptosis. These data indicate that FGF receptor-1 signal transduction in this cell model results in cell survival. Through mechanisms dependent on cell-matrix interactions, possibly involving the alpha3beta1-integrin and laminin produced by the collagen-cultured IBE cells, FGF stimulation also leads to differentiation of the cells.  相似文献   

7.
A confluent endothelial monolayer can be induced to form vascular tubes in response to collagen. We investigated possible mechanisms of collagen-induced tube formation by using antibodies to the VLA-2 integrin receptor and protein kinase C inhibitors. Pre-incubation of cells with anti-VLA-2 (which recognises both the α2 and β1 chains) and AK7 (which recognises only the α2 chain) showed a dose-dependent inhibition of tube formation. At 50 μg/ml, anti-VLA-2 completely inhibited collagen-induced tube formation, whereas AK7 caused only partial inhibition. Both chlorpromazine and trifluoperazine, at concentrations of 10μM, prevented tube formation (> 40% inhibition), In summary, the VLA-2 integrin receptor plays a role in the induction of tube formation by type I collagen. Protein kinase C may be activated during this process.  相似文献   

8.
9.
Matrix metalloproteinases are thought to play an important role in endothelial cell migration and matrix remodeling. We have used an in vitro wound healing migration model and newly generated anti-membrane type 1-matrix metalloproteinase (MT1-MMP) monoclonal antibodies (mAbs) to characterize the role of MT1-MMP during this process. First, the expression and shedding of MT1-MMP are up-regulated upon induction of migration in endothelial cells, as demonstrated by flow cytometry and Western blot analysis. Furthermore, MT1-MMP is concentrated at discrete areas in migrating endothelial cells, in contrast to the diffuse pattern observed in confluent cells. Interestingly, migration of endothelial cells results in the stimulation of MT1-MMP activity, as shown by its ability to process pro-MMP-2 and to degrade fibrinogen assessed by zymography. Moreover, MT1-MMP-mediated gelatin degradation is enriched at migration sites. mAbs generated against the MT1-MMP catalytic domain are shown to inhibit MT1-MMP enzymatic activity and to impair both phorbol 12-myristate 13-acetate-induced endothelial migration and invasion of collagen and fibrin gels. Furthermore, a reduction in the formation of capillary tubes in Matrigel is also observed when endothelial cells are pretreated with the blocking anti-MT1-MMP mAbs. Altogether, these data demonstrate that MT1-MMP plays an important role during endothelial cell migration, and its activity can modulate endothelial migration, invasion, and formation of capillary tubes during the angiogenic response.  相似文献   

10.
Tube formation of endothelial cells is an important step of angiogenesis. However, little is known about the molecular mechanisms underlying growth factor-mediated tube formation by endothelial cells. FGF-2 stimulates tube formation by a murine brain capillary endothelial cell line, IBE cells, when cultured on collagen gels (differentiation-associated culture condition), whereas cells proliferate and migrate without forming tube on fibronectin-coated surface (proliferation/migration-associated condition). To elucidate FGF-2-mediated signal transduction pathways leading to tube formation by endothelial cells, we focused on the contribution of Src family kinases. Src family kinase inhibitor PP2 attenuated FGF-2-induced tube formation. Stable expression of kinase-inactive c-Src in IBE cells demonstrated no dominant negative effect on FGF-2-induced tube formation. In vitro kinase assay revealed that c-Fyn was activated by FGF-2 only in cells cultured on collagen gels. Three independent cell lines, expressing kinase-inactive c-Fyn, all exhibited attenuation of FGF-2-mediated tube formation. However, FGF-2-mediated proliferation or migration was not clearly perturbed in these cells. These results show the first time that c-Fyn plays a pivotal role in tube formation by endothelial cells.  相似文献   

11.
Human umbilical vein endothelial cells differentiate within 12 h to form capillary-like networks of tube structures when the cells are plated on Matrigel, a mixture of basement membrane proteins. Nothing is known about the intracellular signaling events involved in this differentiation. As a first step to define the process, we investigated the possible role of protein kinase C activation by beta-phorbol 12-myristate 13-acetate (PMA) in regulating the formation of the tube structures. In this model, PMA increased tube formation several-fold in a dose-dependent manner with half-maximum stimulation of tube formation at approximately 5 nM PMA. In the absence of serum, essentially little or no tubes were formed on Matrigel unless PMA was added to the medium. Only active phorbol analogs increased tube formation, while the protein kinase C inhibitor, H-7, blocked tube formation. The protein kinase C activators and inhibitors were effective only when added at or just after plating of the cells and did not affect already formed tubes. This study suggests that protein kinase C is involved in the early events of in vitro endothelial cell tube formation on Matrigel.  相似文献   

12.
《The Journal of cell biology》1983,97(5):1648-1652
We have studied the behavior of cloned capillary endothelial cells grown inside a three dimensional collagen matrix. Cell monolayers established on the surface of collagen gels were covered with a second layer of collagen. This induced the monolayers of endothelial cells to reorganize into a network of branching and anastomosing capillary-like tubes. As seen by electron microscopy, the tubes were formed by at least two cells (in transverse sections) delimiting a narrow lumen. In addition, distinct basal lamina material was present between the abluminal face of the endothelial cells and the collagen matrix. These results showed that capillary endothelial cells have the capacity to form vessel-like structures with well-oriented cell polarity in vitro. They also suggest that an appropriate topological relationship of endothelial cells with collagen matrices, similar to that occurring in vivo, has an inducive role on the expression of this potential. This culture system provides a simple in vitro model for studying the factors involved in the formation of new blood vessels (angiogenesis).  相似文献   

13.
Expression of the Polyoma Middle T (PyMT) antigen in endothelial cells results in single-step transformation to hemangioma producing malignant cells. To study the mechanism of PyMT transformation, we used the PyMT induced mouse brain endothelial cell line, bEND.3, expressing constitutively active and dominant negative mutants of the small GTPase Rac. The bEND.3 cell phenotype of tumorigenesis, loss of normal growth control and formation of cysts rather than capillary tubes in fibrin gels was reversed by expression of dominant negative Rac. The mechanism of N17 Rac action in blocking the endothelial cell transformant, PyMT, did not involve effects of Rac on the actin cytoskeleton since this component of the bEND.3 cell phenotype was not affected. Furthermore, the PyMT induced activation of the plasminogen activator (PA)/plasmin system was not affected by Rac inhibition. Inhibition of the downstream effectors of Rae, phosphatidylinositol 3-kinase (P13-K) and p70S6k, which are known to be constitutively activated by PyMT transformation, inhibited bEND. cell proliferation and cyst formation in fibrin gels even in cells expressing V12 constitutively active Rac, but they did not restore capillary tube formation. These results demonstrate that middle T antigen induced endothelial cell transformation requires signal transduction by Rac. The downstream Rac effectors, P13-K and p70S6k, mediate PyMT/Rac effects on cell proliferation and cyst formation, but other unknown effectors of PyMT are required for the cytoskeletal changes and activation of the PA/plasmin system.  相似文献   

14.
Expression of the Polyoma Middle T (PyMT) antigen in endothelial cells results in single-step transformation to hemangioma producing malignant cells. To study the mechanism of PyMT transformation, we used the PyMT induced mouse brain endothelial cell line, bEND.3, expressing constitutively active and dominant negative mutants of the small GTPase Rac. The bEND.3 cell phenotype of tumorigenesis, loss of normal growth control and formation of cysts rather than capillary tubes in fibrin gels was reversed by expression of dominant negative Rac. The mechanism of N17 Rac action in blocking the endothelial cell transformant, PyMT, did not involve effects of Rac on the actin cytoskeleton since this component of the bEND.3 cell phenotype was not affected. Furthermore, the PyMT induced activation of the plasminogen activator (PA)/plasmin system was not affected by Rac inhibition. Inhibition of the downstream effectors of Rac, phosphatidylinositol 3-kinase (PI3-K) and p70S6k, which are known to be constitutively activated by PyMT transformation, inhibited bEND.3 cell proliferation and cyst formation in fibrin gels even in cells expressing V12 constitutively active Rac, but they did not restore capillary tube formation. These results demonstrate that middle T antigen induced endothelial cell transformation requires signal transduction by Rac. The downstream Rac effectors, P13-K and p70S6k, mediate PyMT/Rac effects on cell proliferation and cyst formation, but other unknown effectors of PyMT are required for the cytoskeletal changes and activation of the PA/plasmin system.  相似文献   

15.
Human umbilical vein endothelial cell attachment, spreading and migration on collagen and vitronectin are mediated by integrins alpha 2 beta 1 and alpha v beta 3, respectively, and these events take place in the absence of cytokines, growth factors, or chemoattractants. Cell attachment and spreading on these ligands occur in the absence of extracellular calcium, as does migration on collagen. In contrast, vitronectin-mediated migration is absolutely dependent on the presence of extracellular calcium. Cell contact with immobilized vitronectin or anti-alpha v beta 3 mAbs promotes a measurable rise in [Ca2+]i which requires an extracellular calcium source, whereas collagen, or anti- alpha 2 beta 1 mAbs fail to promote this signaling event. In fact, vitronectin-mediated migration and the rise in intracellular calcium showed the same dose dependence on extracellular calcium. While vitronectin and collagen differ in their ability to induce a calcium influx both ligands or antibodies to their respective integrins promote an equivalent increase in intracellular pH consistent with activation of the Na/H antiporter an event independent of extracellular calcium. These results support two salient conclusions. Firstly, collagen and vitronectin, through their respective integrins, promote distinct intracellular signaling events. Secondly, the alpha v beta 3 specific influx of calcium is not required for cell spreading yet appears to facilitate cellular migration on vitronectin.  相似文献   

16.
Aspects of tumor-induced angiogenesis in vitro were examined using an assay involving collagen gel invasion by a surface monolayer of bovine endothelial cells under the influence of serum free conditioned medium produced by C6 cells, an experimentally derived rat glial tumor cell line. The effects of the polyanionic compound suramin, known to interfere with growth factor/cell signaling on this process were evaluated. Collagen gel invasion was quantified by adding C6 conditioned medium with or without various doses of suramin to monolayers of bovine aortic endothelial cells grown on type I collagen gels in transwell inserts. Cultures were monitored with phase-contrast microscopy. After various periods of incubation collagen gels were fixed, embedded in epoxy resin, and 1-μm thick sections were stained with toluidine blue. Additional cultures were used to evaluate the effects of C6 conditioned medium and suramin on endothelial cell proliferation, and on chemotaxis through 8-μm pores. C6 glioma cell conditioned medium induced large vessel endothelial cells to sprout into the underlying collagen matrix and subsequently from networks of capillary like tubes. Conditioned medium was also chemotactic and mitogenic for these cells. The addition of suramin to C6 glioma conditioned medium prevents tube formation in collagen gels, and inhibits both endothelial cell proliferation and chemotaxis in a dose dependent manner. These results suggest that glial tumor cell conditioned medium induces angiongenesis in large vessel endothelial cells in vitro via mechanisms which are disrupted by suramin, most likely involving tumor-derived growth factor release and/or endothelium-mediated matrix proteolysis.  相似文献   

17.
Using a quantitative in vitro model of spontaneous endothelial sprout formation, we have attempted to define physiological inhibitors of angiogenesis from hyaline cartilage, a tissue whose antiangiogenic properties have been well described. The model consists of embedding bovine microvascular endothelial cell aggregates into fibrin or collagen gels, which results in the formation of radially growing sprouts. When chondrocytes derived from the permanent cartilagenous region of the chick embryo sternum are cocultured with the endothelial cell aggregates, sprout formation is markedly inhibited. Addition of anti-TGF-beta antibodies to the cocultures significantly reduced the inhibitory effect of chondrocytes on sprout formation. Chondrocyte-conditioned medium or exogenously added TGF-beta 1 have a similar albeit transient inhibitory effect. Depletion of TGF-beta from chondrocyte conditioned medium with anti-TGF-beta antibodies and solid-phase protein-A significantly decreases the inhibition of sprout formation. These results demonstrate that a chondrocyte-derived TGF-beta-like molecule inhibits capillary sprout formation in vitro and suggest that the antiangiogenic properties of cartilage may at least in part, be mediated by TGF-beta.  相似文献   

18.
19.
Sun Y  Qian H  Xu XD  Han Y  Yen LF  Sun DY 《Plant & cell physiology》2000,41(10):1136-1142
The distribution of integrin-like proteins in the pollen tube was examined by immunofluorescent labeling and western blotting techniques using antibodies against human placenta integrin vitronectin receptor (VnR), and alpha(v), beta3 and beta1 integrin subunits. Pseudocolor-coded confocal images showed intense immunostaining within 10 and 5 microm of the tip of the pollen tube in Lilium davidii and Nicotiana tabacum respectively. In both segments the site near the plasma membrane was labeled. Western blotting analyses revealed cross-reaction of anti-beta3, anti-alpha(v) and anti-VnR with the proteins in the plasma membrane preparation of L. davidii and Hemerocallis citrina pollen tube. These studies provide evidence for the first time that the integrin-like protein is present in pollen tubes, and it may be mainly composed of alpha(v) and beta3 subunits in lily pollen tubes. In a functional assay, neither anti-VnR antibody nor the Arg-Gly-Asp-Ser tetrapeptide inhibited pollen tube growth of N. tabacum in vitro, but both of them depressed tube growth on the stigma and in style under quasi in vivo culture conditions. The integrin-like proteins localized in the tip and periphery of the pollen tube appeared to play roles in growth of the pollen tube tip and interaction with the extracellular matrix of the style.  相似文献   

20.
In vitro angiogenesis assays have shown that tubulogenesis of endothelial cells within biogels, like collagen or fibrin gels, only appears for a critical range of experimental parameter values. These experiments have enabled us to develop and validate a theoretical model in which mechanical interactions of endothelial cells with extracellular matrix influence both active cell migration--haptotaxis--and cellular traction forces. Depending on the number of cells, cell motility and biogel rheological properties, various 2D endothelial patterns can be generated, from non-connected stripe patterns to fully connected networks, which mimic the spatial organization of capillary structures. The model quantitatively and qualitatively reproduces the range of critical values of cell densities and fibrin concentrations for which these cell networks are experimentally observed. We illustrate how cell motility is associated to the self-enhancement of the local traction fields exerted within the biogel in order to produce a pre-patterning of this matrix and subsequent formation of tubular structures, above critical thresholds corresponding to bifurcation points of the mathematical model. The dynamics of this morphogenetic process is discussed in the light of videomicroscopy time lapse sequences of endothelial cells (EAhy926 line) in fibrin gels. Our modeling approach also explains how the progressive appearance and morphology of the cellular networks are modified by gradients of extracellular matrix thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号