首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine brain pyridoxal kinase has been cloned. A 1.2 kilo-based cDNA with a 966-base pair open reading frame was determined from a porcine brain cortex cDNA library using PCR technique. The DNA sequence was shown to encode a protein of 322 amino acid residues with a molecular mass of 35.4 kDa. The amino acid sequence deduced from the nucleotide sequence of the cDNA was shown to match the partial primary sequence of pyridoxal kinase. Expression of the cloned cDNA in E. coli has produced a protein which displays both pyridoxal kinase activity and immunoreactivity with monoclonal antibodies raised against natural enzyme from porcine brain. With respect to the physical properties, it is shown that the recombinant protein exhibits identical kinetic parameters with the pure enzyme from porcine brain. Although the primary sequence of porcine pyridoxal kinase has been shown to share 87% homology with the human enzyme, we have shown that the porcine enzyme carries an extra peptide of ten amino acid residues at the N-terminal domain.  相似文献   

2.
Pyridoxal kinase catalyses the phosphorylation of the vitamin B6. A human brain pyridoxal kinase cDNA was isolated, and the recombinant enzyme was overexpressed in E. coli as a fusion protein with maltose binding protein (MBP). Pure pyridoxal kinase exhibits a molecular mass of about 40 kDa when examined by SDS-PAGE and FPLC gel filtration. The recombinant enzyme is a monomer endowed with catalytic activity, indicating that the native quaternary structure of pyridoxal kinase is not a prerequisite for catalytic function. Zn2+ is the most effective divalent cation in the phosphorylation of pyridoxal, and the human enzyme has maximum catalytic activity in the narrow pH range of 5.5-6.0. The Km values for two substrates pyridoxal and ATP are 97 microM and 12 microM, respectively. In addition, the unfolding processes of the recombinant enzyme were monitored by circular dichroism. The values of the free energy change of unfolding (AGo = 1.2 kcal x mol(-1) x K(-1)) and the midpoint transition (1 M) suggested that the enzyme is more stable than ovine pyridoxal kinase against denaturation by guanidine hydrochloride. Intrinsic fluorescence spectra of the human enzyme from red-edge excitation and fluorescence quenching experiments showed that the tryptophanyl residues are not completely exposed and more accessible to neutral acrylamide than to the negatively charged iodide. The first complete set of catalytic and structural properties of human pyridoxal kinase provide valuable information for further biochemical studies on this enzyme.  相似文献   

3.
4.
The three-dimensional structures of brain pyridoxal kinase and its complex with the nucleotide ATP have been elucidated in the dimeric form at 2.1 and 2.6 A, respectively. Results have shown that pyridoxal kinase, as an enzyme obeying random sequential kinetics in catalysis, does not possess a lid shape structure common to all kinases in the ribokinase superfamily. This finding has been shown to be in line with the condition that pyridoxal kinase binds substrates with variable sizes of chemical groups at position 4 of vitamin B(6) and its derivatives. In addition, the enzyme contains a 12-residue peptide loop in the active site for the prevention of premature hydrolysis of ATP. Conserved amino acid residues Asp(118) and Tyr(127) in the peptide loop could be moved to a position covering the nucleotide after its binding so that its chance to hydrolyze in the aqueous environment of the active site was reduced. With respect to the evolutionary trend of kinase enzymes, the existence of this loop in pyridoxal kinase could be classified as an independent category in the ribokinase superfamily according to the structural feature found and mechanism followed in catalysis.  相似文献   

5.
The complete amino acid sequence of adenylate kinase from baker's yeast   总被引:7,自引:0,他引:7  
The complete amino acid sequence of cytosolic adenylate kinase (MgATP + AMP----MgADP + ADP) from baker's yeast has been determined. Tryptic and clostripaic cleavage of the protein yielded 27 and 10 fragments, respectively. They were sequenced with either a solid-phase sequencer or a gas-phase sequencer. Alignment of the clostripaic fragments was deduced from the sequence of peptides obtained by endoproteinase Lys-C and cyanogen bromide cleavages. The N-terminus is blocked by an acetyl group as shown by proton magnetic resonance. Carboxypeptidase A digestion of the whole protein showed that the C-terminal sequence is -Lys-Asn, in agreement with the sequence of peptides from tryptic, clostripaic and 2-iodosobenzoic acid cleavages. The enzyme is a monomer of 220 amino acids with Mr 24077. Comparison of the sequence of the cytosolic adenylate kinases from yeast and pig shows 25% identity with highly conserved segments in the putative active-site region of the enzyme. After position 111, however, there is an insertion of 32 residues in the yeast species, similar to the adenylate kinase and the GTP:AMP phosphotransferase from beef heart mitochondria.  相似文献   

6.
THR1, the gene from Saccharomyces cerevisiae, encoding homoserine kinase, one of the threonine biosynthetic enzymes, has been cloned by complementation. The nucleotide sequence of a 3.1-kb region carrying this gene reveals an open reading frame of 356 codons, corresponding to about 40 kDa for the encoded protein. The presence of three canonical GCN4 regulatory sequences in the upstream flanking region suggests that the expression of THR1 is under the general amino acid control. In parallel, the enzyme was purified by four consecutive column chromatographies, monitoring homoserine kinase activity. In SDS gel electrophoresis, homoserine kinase migrates like a 40-kDa protein; the native enzyme appears to be a homodimer. The sequence of the first 15 NH2-terminal amino acids, as determined by automated Edman degradation, is in accordance with the amino acid sequence deduced from the nucleotide sequence. Computer-assisted comparison of the yeast enzyme with the corresponding activities from bacterial sources showed that several segments among these proteins are highly conserved. Furthermore, the observed homology patterns suggest that the ancestral sequences might have been composed from separate (functional) domains. A block of very similar amino acids is found in the homoserine kinases towards the carboxy terminus that is also present in many other proteins involved in threonine (or serine) metabolism; this motif, therefore, may represent the binding site for the hydroxyamino acids. Limited similarity was detected between a motif conserved among the homoserine kinases and consensus sequences found in other mono- or dinucleotide-binding proteins.  相似文献   

7.
The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.  相似文献   

8.
The complete amino acid sequence of adenylate kinase (MgATP + AMP in equilibrium MgADP + ADP) from Paracoccus denitrificans has been determined. 1. The S-[14C]carboxymethylated protein was cleaved with clostripain, cyanogen bromide and endoproteinase Lys-C; 18, 9 and 6 fragments, respectively, were analyzed. Some of these peptides were further degraded by trypsin, Staphylococcus aureus V8 protease and carboxypeptidases A and B. The fragments were separated by HPLC and sequenced with a gas-phase sequencer. 2. Sequencing the whole unblocked protein yielded the N-terminal region. The C-terminal residues were obtained by carboxypeptidase-Y digestion in agreement with the sequence of tryptic and cyanogen bromide peptides. 3. The final sequence shows 217 amino acids with Mr = 23,609 and contains one free cysteine and a disulfide bond. 4. The comparison of the P. denitrificans sequence with other known adenylate kinases shows highest similarity with the structurally known Escherichia coli enzyme (47%). The only and catalytically relevant His in the paracoccal enzyme is close to the site of binding of adenosine(5')pentaphospho(5')adenosine to E. coli adenylate kinase. The disulfide bridge is located in the 30-residue segment, which is indicative of the large variants and is absent in cytosolic adenylate kinase. The similarity to the mitochondrial intermembrane-space and matrix adenylate kinase isoenzymes is only 40% and 30%, respectively, while 39% of redidues are identical to those of yeast cytosolic adenylate kinase. Therefore, adenylate kinases do not support the hypothesis of a close relationship between Paracoccus and mitochondria.  相似文献   

9.
10.
A yeast gene termed YKR coding for a putative protein kinase was isolated by using the cloned cDNA for rabbit protein kinase C as a hybridization probe. The encoded protein (YKR), composed of 380 amino acid residues, shows extensive sequence homology to serine/threonine-specific protein kinases from various species in the approx. 320 C-terminal amino acid residues, strongly suggesting that YKR is endowed with a protein kinase activity. The observed homologies to the cdc25 suppressing protein kinase from yeast, the catalytic subunit of mammalian cAMP-dependent protein kinase, and mammalian protein kinase C were 76, 48 and 37%, respectively. Gene replacement experiments showed that YKR itself is not essential for cell proliferation.  相似文献   

11.
Ceramide-1-phosphate is a sphingolipid metabolite that has been implicated in membrane fusion of brain synaptic vesicles and neutrophil phagolysosome formation. Ceramide-1-phosphate can be produced by ATP-dependent ceramide kinase activity, although little is known of this enzyme because it has not yet been highly purified or cloned. Based on sequence homology to sphingosine kinase type 1, we have now cloned a related lipid kinase, human ceramide kinase (hCERK). hCERK encodes a protein of 537 amino acids that has a catalytic region with a high degree of similarity to the diacylglycerol kinase catalytic domain. hCERK also has a putative N-myristoylation site on its NH(2) terminus followed by a pleckstrin homology domain. Membrane but not cytosolic fractions from HEK293 cells transiently transfected with a hCERK expression vector readily phosphorylated ceramide but not sphingosine or other sphingoid bases, diacylglycerol or phosphatidylinositol. This activity was clearly distinguished from those of bacterial or human diacylglycerol kinases. With natural ceramide as a substrate, the enzyme had a pH optimum of 6.0-7.5 and showed Michaelis-Menten kinetics, with K(m) values of 187 and 32 microm for ceramide and ATP, respectively. Northern blot analysis revealed that hCERK mRNA expression was high in the brain, heart, skeletal muscle, kidney, and liver. A BLAST search analysis using the hCERK sequence revealed that putative ceramide kinases (CERKs) exist widely in diverse multicellular organisms including plants, nematodes, insects, and vertebrates. Phylogenetic analysis revealed that CERKs are a new class of lipid kinases that are clearly distinct from sphingosine and diacylglycerol kinases. Cloning of CERK should provide new molecular tools to investigate the physiological functions of ceramide-1-phosphate.  相似文献   

12.
Wada S  Watanabe T 《Genetica》2007,131(3):307-314
Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan—Paramecium caudatum—using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.  相似文献   

13.
Members of the transketolase group of thiamine-diphosphate-dependent enzymes from 17 different organisms including mammals, yeast, bacteria, and plants have been used for phylogenetic reconstruction. Alignment of the amino acid and DNA sequences for 21 transketolase enzymes and one putative transketolase reveals a number of highly conserved regions and invariant residues that are of predicted importance for enzyme activity, based on the crystal structure of yeast transketolase. One particular sequence of 36 residues has some similarities to the nucleotide-binding motif and we designate it as the transketolase motif. We report further evidence that the recP protein from Streptococcus pneumoniae might be a transketolase and we list a number of invariant residues which might be involved in substrate binding. Phylogenies derived from the nucleotide and the amino acid sequences by various methods show a conventional clustering for mammalian, plant, and gram-negative bacterial transketolases. The branching order of the gram-positive bacteria could not be inferred reliably. The formaldehyde transketolase (sometimes known as dihydroxyacetone synthase) of the yeast Hansenula polymorpha appears to be orthologous to the mammalian enzymes but paralogous to the other yeast transketolases. The occurrence of more than one transketolase gene in some organisms is consistent with several gene duplications. The high degree of similarity in functionally important residues and the fact that the same kinetic mechanism is applicable to all characterized transketolase enzymes is consistent with the proposition that they are all derived from one common ancestral gene. Transketolase appears to be an ancient enzyme that has evolved slowly and might serve as a model for a molecular clock, at least within the mammalian clade. Received: 13 September 1995 / Accepted: 14 November 1996  相似文献   

14.
The complete amino acid sequence of the catalytic domain of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been deduced from the nucleotide sequence of cloned cDNA. Extensive similarity in sequence, taken to indicate similarity in secondary and tertiary structure, is seen between the mammalian enzyme and yeast hexokinase isozymes A and B. All residues critical for binding glucose to the yeast enzyme are conserved in brain hexokinase. A location for the substrate ATP binding site is proposed based on relation of structural features in the yeast enzyme to characteristics commonly observed in other nucleotide binding enzymes; sequences in regions proposed to be important for binding of ATP to the yeast enzyme are highly conserved in brain hexokinase.  相似文献   

15.
16.
Uracil-DNA glycosylase is the DNA repair enzyme responsible for the removal of uracil from DNA, and it is present in all organisms investigated. Here we report on the cloning and sequencing of a cDNA encoding the human uracil-DNA glycosylase. The sequences of uracil-DNA glycosylases from yeast, Escherichia coli, herpes simplex virus type 1 and 2, and homologous genes from varicella-zoster and Epstein-Barr viruses are known. It is shown in this report that the predicted amino acid sequence of the human uracil-DNA glycosylase shows a striking similarity to the other uracil-DNA glycosylases, ranging from 40.3 to 55.7% identical residues. The proteins of human and bacterial origin were unexpectedly found to be most closely related, 73.3% similarity when conservative amino acid substitutions were included. The similarity between the different uracil-DNA glycosylase genes is confined to several discrete boxes. These findings strongly indicate that uracil-DNA glycosylases from phylogenetically distant species are highly conserved.  相似文献   

17.
The gene (ddc) encoding a novel enzyme, l-2,4-diaminobutyrate decarboxylase (DABA-DC; EC 4.1.1.-) in Acinetobacter baumannii was sequenced, and an open reading frame of 1,530 nucleotides was detected. The sequence of 20 N-terminal amino acids of purified DABA-DC and of its proteolytic peptide fragments coincided with those deduced from the nucleotide sequence determined. Comparison of the predicted amino acid sequence of the A. baumannii enzyme with those of other pyridoxal 5′-phosphate-dependent decarboxylases revealed significant similarity to the group II amino acid decarboxylases and conservation of the putative pyridoxal 5′-phosphate-binding domain. Received:20 February 1996 / Accepted 15 April 1996  相似文献   

18.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll and bundle-sheath cells. Although the C4 cycle is biochemically well understood many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive.Protein kinases are likely involved in these regulatory processes providing links to hormonal, metabolic and developmental signal transduction pathways. We have identified several protein kinases that are differentially expressed in mesophyll and bundle-sheath cells of the C4 plant Sorghum bicolor. Here we describe the characterization of two putative protein kinases that show high similarity to the SNF1/AMPK family of protein serine/threonine kinases. The mRNA of both kinases accumulates to much higher levels in mesophyll cells than in the bundle-sheath and can also be detected in root tissue. Complementation experiments with a snf1 mutant of Saccharomyces cerevisiae indicate that the S. bicolor protein kinase SNFL1 does not represent a functional homologue of the yeast SNF1 protein kinase.  相似文献   

19.
Mutational Analysis of UMP Kinase from Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
UMP kinase from Escherichia coli is one of the four regulatory enzymes involved in the de novo biosynthetic pathway of pyrimidine nucleotides. This homohexamer, with no counterpart in eukarya, might serve as a target for new antibacterial drugs. Although the bacterial enzyme does not show sequence similarity with any other known nucleoside monophosphate kinase, two segments between amino acids 35 to 78 and 145 to 194 exhibit 28% identity with phosphoglycerate kinase and 30% identity with aspartokinase, respectively. Based on these similarities, a number of residues of E. coli UMP kinase were selected for site-directed mutagenesis experiments. Biochemical, kinetic, and spectroscopic analysis of the modified proteins identified residues essential for catalysis (Asp146), binding of UMP (Asp174), and interaction with the allosteric effectors, GTP and UTP (Arg62 and Asp77).  相似文献   

20.
NDR (nuclear Dbf2-related) kinase belongs to a family of kinases that is highly conserved throughout the eukaryotic world. We showed previously that NDR is regulated by phosphorylation and by the Ca(2+)-binding protein, S100B. The budding yeast relatives of Homo sapiens NDR, Cbk1, and Dbf2, were shown to interact with Mob2 (Mps one binder 2) and Mob1, respectively. This interaction is required for the activity and biological function of these kinases. In this study, we show that hMOB1, the closest relative of yeast Mob1 and Mob2, stimulates NDR kinase activity and interacts with NDR both in vivo and in vitro. The point mutations of highly conserved residues within the N-terminal domain of NDR reduced NDR kinase activity as well as human MOB1 binding. A novel feature of NDR kinases is an insert within the catalytic domain between subdomains VII and VIII. The amino acid sequence within this insert shows a high basic amino acid content in all of the kinases of the NDR family known to interact with MOB proteins. We show that this sequence is autoinhibitory, and our data indicate that the binding of human MOB1 to the N-terminal domain of NDR induces the release of this autoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号