首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants growing in the shade receive both low light irradiance and light enriched in far red (FR) (i.e., light with a low red (R) to FR ratio). In an attempt to uncouple the R/FR ratio effects from light irradiance effects, we utilized Stellaria longipes because this species has two distinct natural population ecotypes, alpine (dwarf) and prairie (tall). The alpine population occupies the open, sun habitat. By contrast, the prairie population grows in the shade of other plants. Both 'sun' and 'shade' ecotypes responded with increased stem elongation responses under low irradiance, relative to growth under 'normal' irradiance, and this increased growth was proportionally similar. However, only the shade ecotype had increased shoot elongation in response to a low R/FR ratio. By contrast, the sun ecotype showed increased stem elongation in response to increasing R/FR ratio. Varying the R/FR ratios had no significant effect on ethylene evolution in either sun or shade ecotype. Under low irradiance, only the sun ecotype showed a significantly changed (decreased) ethylene evolution. We conclude that R/FR ratio and irradiance both regulate growth, and that irradiance can also influence ethylene evolution of the sun ecotype. By contrast, R/FR ratio and irradiance, while having profound influences on growth of the shade ecotype, do not appear to regulate these growth changes via effects on ethylene production.  相似文献   

2.
From two distinct ecotypes of Stellaria longipes, one genotype was chosen from each of two very different locations, an alpine (sun) and a prairie (shade) habitat. Plants were clonally propagated and grown in controlled environment chambers under low and moderate red to far-red (R/FR) ratios. The prairie ecotype plants exhibited increased stem elongation, leaf expansion and flowering (6-fold) in response to a low R/FR ratio, relative to plants grown under the moderate R/FR ratio. In contrast, plants of the alpine ecotype showed no increased growth in response to a low R/FR ratio and their flowering was reduced, all relative to the plants grown under the moderate R/FR ratio. These different phenotypic responses to the reduction in R/FR ratio were associated with very different profiles and concentrations of endogenous cytokinins (CKs) assessed in growing tissues of the upper shoots. Specifically, increased total CKs were associated with the rapid growth of plants of the prairie ecotype under a low R/FR ratio. In particular, concentrations of bioactive trans-zeatin and dihydrozeatin, were increased during the period of most rapid shoot growth by 2- to 4- fold for these prairie ecotype plants grown under the low R/FR ratio treatment. In contrast, changes in CK levels for the alpine ecotype plants grown under low R/FR ratios were muted. Of especial interest, plants of the alpine ecotype had a predominance of cis-pathway CKs, whereas the low elevation, prairie ecotype plants accumulated predominantly trans-pathway CKs. Speculatively, the pattern emphasizing trans-pathway CKs may be explained by increased LONELY GUY enzyme activity. This enzyme converts and activates nucleotide CKs to free base CKs (bypassing riboside CKs). It could thus explain, in part, the prairie ecotype's ability to respond to shade light with such a high degree of plasticity if one assumes that high trans-CKs levels are causal for the increased shoot growth seen under a low R/FR ratio.  相似文献   

3.
Shade avoidance in plants involves rapid shoot elongation to grow toward the light. Cell wall-modifying mechanisms are vital regulatory points for control of these elongation responses. Two protein families involved in cell wall modification are expansins and xyloglucan endotransglucosylase/hydrolases. We used an alpine and a prairie ecotype of Stellaria longipes differing in their response to shade to study the regulation of cell wall extensibility in response to low red to far-red ratio (R/FR), an early neighbor detection signal, and dense canopy shade (green shade: low R/FR, blue, and total light intensity). Alpine plants were nonresponsive to low R/FR, while prairie plants elongated rapidly. These responses reflect adaptation to the dense vegetation of the prairie habitat, unlike the alpine plants, which almost never encounter shade. Under green shade, both ecotypes rapidly elongate, showing that alpine plants can react only to a deep shade treatment. Xyloglucan endotransglucosylase/hydrolase activity was strongly regulated by green shade and low blue light conditions but not by low R/FR. Expansin activity, expressed as acid-induced extension, correlated with growth responses to all light changes. Expansin genes cloned from the internodes of the two ecotypes showed differential regulation in response to the light manipulations. This regulation was ecotype and light signal specific and correlated with the growth responses. Our results imply that elongation responses to shade require the regulation of cell wall extensibility via the control of expansin gene expression. Ecotypic differences demonstrate how responses to environmental stimuli are differently regulated to survive a particular habitat.  相似文献   

4.
5.
6.
Environment-induced alteration of DNA methylation levels was investigated inStellaria longipes (Caryophyllaceae). Total cytosine methylation levels were measured using HPLC in 6 genets representing two ecotypes (alpine and prairie) grown in short day photoperiod and cold temperature (SDC) and long day photoperiod and warm temperature (LDW) conditions. The levels of methylated cytosine were 16.54-22.20% among the three genets from the alpine and 12.62–24.70% in the three prairie genets when they were grown in SDC conditions. After the plants were moved to the LDW conditions, all of the three genets from the alpine showed decreasing levels of DNA methylation up to 6 days of growing in LDW. When the plants continued to grow in LDW for 10 days the average methylation level in the prairie genotypes showed no significant change. Cytosine methylation level was also detected inHpall andSau3AI restriction sites using the coupled restriction enzyme digestion and random amplification (CRED-RA) procedure, in which 15 random primers were used. Fifty per cent of the amplified bands with either or both of these two restriction sites were identified as being methylated in an alpine genotype (1C) and approximately 66% were found to be methylated in a prairie genotype (7C). It was observed that the change in growing conditions from SDC to LDW induced a decrease of methylation levels inHpall sites.  相似文献   

7.
Sunflower (Helianthus annuus L.) stems showed increased elongation under two types of vegetative shade: canopy shade (low red to far red [R/FR] ratio) and neighbouring proximity shade (FR enrichment). Hypocotyls also elongated more under narrow-band FR light than under narrow-band R light. Ethylene levels were determined in actively elongating 7-day-old hypocotyls and 17-day-old internodes under three R/FR ratios. Ethylene levels were lower in both sunflower hypocotyls and internodes when the R/FR ratio was reduced. Both FR enrichment of normal R/FR ratio and narrow-band FR light with very low light irradiance resulted in reduction in ethylene levels in 7-day-old hypocotyls. Further, in application experiments, sunflower stems grown under low R/FR ratio were more sensitive to ethephon and less sensitive to aminoethoxyvinylglycine (AVG) than stems grown under high R/FR ratio. Low R/FR ratio appears to initiate reduction in ethylene levels in sunflower seedlings, allowing maximum stem elongation. These results, and findings of other authors, suggest that various plant species may have developed different ways of regulating stem elongation and ethylene levels in response to low R/FR ratio.  相似文献   

8.
The photomorphogenic mutation lv in the garden pea (Pisum sativum L.), which appears to reduce the response to light-stable phytochrome, has been isolated on a tall, late photoperiodic genetic background and its effects further characterised. Plants possessing lv have a reduced flowering response to photoperiod relative to wild-type plants, indicating that light-stable phytochrome may have a flower-inhibitory role in the flowering response of long-day plants to photoperiod. In general, lv plants are longer and have reduced leaf development relative to Lv plants. These differences are maximised under continuous light from fluorescent lamps (containing negligible far-red (FR) light), and decrease with addition of FR to the incident light. Enrichment of white light from fluorescent lamps with FR promotes stem elongation in the wild type but causes a reduction in elongation in the lv mutant. This “negative” shade-avoidance response appears to be the consequence of a strong inhibitory effect of light rich in FR, revealed in lv plants in the absence of a normal response to red (R) light. These results indicate that the wild-type response to the R: FR ratio may be comprised of two distinct photoresponses, one in which FR supplementation promotes elongation by reducing the inhibitory effect of R, and the other in which light rich in FR actively inhibits elongation. This hypothesis is discussed in relation to functional differentiation of phytochrome types in the light-grown plant. Gene lw has been reported previously to reduce internode length and the response to gibberellin A1, and to delay flowering. The present study shows that the lw mutation confers an increased response to photoperiod. In all these responses the lw phenotype is superficially “opposite” to the lv phenotype. The possibility that the mutation might primarily affect light perception was therefore considered. The degree of dwarfing of lw plants was found to depend upon light quality and quantity. Dwarfing is more extreme in plants grown under continuous R light than in those grown in continuous FR or blue light or in darkness. Studies of the fluence-rate response show that the lw mutation imparts a lower fluence requirement for inhibition of elongation by white light from fluorescent lamps. Dark-grown lw plants are more strongly inhibited by a R pulse than are wild-type plants but, as in the wild type, this inhibition remains reversible by FR. Light-grown lw plants show an exaggerated elongation response to end-of-day FR light. Taken together, these findings indicate that the lw mutant may be hypersensitive to phytochrome action.  相似文献   

9.
10.
Using two ecotypes of Stellaria longipes an alpine form with low plasticity and a prairie form with high plasticity, we investigated whether ethylene was involved in the response to wind stress and might be important in controlling plasticity of stem elongation. Stem growth inhibition was positively correlated with concentration of ethephon application and elevation in ambient ethylene in alpine ecotypes, whereas stem growth in prairie plants was stimulated by low ethephon concentrations. When treated with high AVG, the effects were reversed: alpine plant growth was promoted and prairie plant growth was inhibited. Prairie plants exhibited a daily rhythm in ethylene evolution which increased and peaked at 1500 h, and which was absent in alpine plants. Ethylene evolution did not change significantly during the first 2 weeks of growth in alpine plants, whereas ethylene in prairie plants increased significantly during periods of rapid stem elongation. Wind treatment inhibited growth in both ecotypes, but only alpine plants showed a recovery of growth to control levels when wind stressed plants were pretreated with STS. In addition, only alpine plants showed an increase in ethylene evolution in response to wind simulation, whereas prairie plant ethylene evolution did not deviate from rhythms observed in unstressed plants. We concluded that ethylene dwarfs stems in alpine S. longipes in response to wind stress. However, low levels of ethylene may stimulate growth in prairie ecotypes and act independently of wind stress intensity. The contrasting ability to synthesize and respond to ethylene can account for part of the difference in plasticity documented between the two ecotypes.  相似文献   

11.
Long day (LD) exposure of rosette plants causes rapid stem/petiole elongation, a more vertical growth habit, and flowering; all changes are suggestive of a role for the gibberellin (GA) plant growth regulators. For Arabidopsis (Arabidopsis thaliana) L. (Heynh), we show that enhancement of petiole elongation by a far-red (FR)-rich LD is mimicked by a brief (10 min) end-of-day (EOD) FR exposure in short day (SD). The EOD response shows red (R)/FR photoreversibility and is not affected in a phytochrome (PHY) A mutant so it is mediated by PHYB and related PHYs. FR photoconversion of PHYB to an inactive form activates a signaling pathway, leading to increased GA biosynthesis. Of 10 GA biosynthetic genes, expression of the 20-oxidase, AtGA20ox2, responded most to FR (up to a 40-fold increase within 3 h). AtGA20ox1 also responded but to a lesser extent. Stimulation of petiole elongation by EOD FR is reduced in a transgenic AtGA20ox2 hairpin gene silencing line. By contrast, it was only in SD that a T-DNA insertional mutant of AtGA20ox1 (ga5-3) showed reduced response. Circadian entrainment to a daytime pattern provides an explanation for the SD expression of AtGA20ox1. Conversely, the strong EOD/LD FR responses of AtGA20ox2 may reflect its independence of circadian regulation. While FR acting via PHYB increases expression of AtGA20ox2, other GA biosynthetic genes are known to respond to R rather than FR light and/or to other PHYs. Thus, there must be different signal transduction pathways, one at least showing a positive response to active PHYB and another showing a negative response.  相似文献   

12.

5-Azacytidine (5-AzaC) causes hypomethylation of genomic DNA and induces phenotype variation in many plant species. Modulating the methylation status of cytosine by 5-AzaC to generate novel phenotypes in poplars have not been attempted. In this study, a population of 288 plants was regenerated from leaves of Populus nigra on medium supplemented with 100–1000 µM 5-AzaC. The differentiation of leaves was delayed and the differentiation rate decreased as the 5-AzaC concentration increased. Compared with plants regenerated on 5-AzaC-free medium (control), the plants regenerated on high-5-AzaC medium (600–1000 µM) had significantly higher DNA methylation levels and were shorter, whereas the plants regenerated on low-5-AzaC medium were unchanged; the plants regenerated on 100 µM 5-AzaC medium had significant more leaves; the plants regenerated on 400 µM 5-AzaC medium had significantly higher leaf chlorophyll b and total chlorophyll contents, while the plants on 800 and 1000 µM 5-AzaC medium had a significantly lower chlorophyll a content; most photosynthetic parameters of the plants regenerated on 5-AzaC-treated medium decreased, except for the net photosynthetic rate (Pn) and transpiration rate (Tr) of plants on 100, 200, and 400 µM medium, and the instant water utilization efficiency (WUEi) of plants on 1000 µM medium. The superoxide dismutase activity of plants on ≥ 400 µM 5-AzaC medium was significantly higher than in the control. Significant weak correlations were found between the methylation level of regenerants and plant height, chlorophyll a content, Pn, Tr, stomatal conductance, intercellular CO2 concentration, and WUEi, indicating these phenotypic changes were related to the methylation changes. Our results demonstrated the use of 5-AzaC at the regeneration stage induced epigenetic as well as phynotypic variations in poplar regenerants and generated plant materials for genetic breeding and epigenetic studies.

  相似文献   

13.
Using degenerate oligonucleotides that correspond to conserved amino acid residues of known 1-aminocyclopropane-1-carboxylic acid (ACC) synthases, we cloned a genomic fragment that encodes ACC synthase in Stellaria longipes. Southern analysis suggests that ACC synthase is encoded by a small gene family comprising about 4 members. We isolated four unique ACC synthase cDNA clones under different growth conditions from alpine and prairie ecotypes of S. longipes. Northern analyses suggest that ACC synthase genes are differentially and synergistically regulated by photoperiod and temperature. Such differential regulation of ACC synthase genes positively correlate with the levels of ACC and ethylene. Since ethylene has previously been shown to partly control the stem elongation plasticity in S. longipes, we propose that differential regulation of ACC synthase genes may represent one of the underlying molecular mechanisms of phenotypic plasticity in S. longipes.  相似文献   

14.
Plants from two ecotypes of Stellaria longipes, alpine (an open, sunny habitat) and prairie (where adjacent plants provide a shaded habitat), were grown under normal and reduced levels of photosynthetically active radiation (PAR). Growth under low PAR is significantly promoted in both ecotypes. When quantified by the stable isotope dilution method, endogenous gibberellins (GAs) (GA1, GA8, GA20, GA19) were significantly elevated under low PAR in both 'sun' and 'shade' ecotypes, as was GA53 in the shade ecotype. Changes in endogenous GA1 levels were significantly correlated with stem growth during a 28 d growth cycle and with relative growth rate (RGR) for height under low PAR for both ecotypes. Interestingly, under low irradiance PAR, changes (both increases and decreases) in GA8, the 2beta-hydroxylated 'inactive' catabolite of GA1, closely parallel bidaily stem growth changes for both ecotypes. Because the significantly greater stem elongation of both ecotypes in response to low irradiance PAR is associated with significant increases in the endogenous levels of five GAs (GA53, GA19, GA1, GA8) in the early 13-hydroxylation GA biosynthesis pathway (measured at days 7,14 and 21), we conclude that the low irradiance PAR has very likely induced an overall increase in GA biosynthesis.  相似文献   

15.
Abstract. We investigated the effects of photon fluence rate on internode elongation in fully de-etiolated plants growing under sunlight. Our goal was to find out whether perception by the stems of fluence rate changes related to canopy density may be involved in the modulation of internode growth in canopies formed by plants of similar stature (e.g. crop stands). Using Datura ferox L. and Sinapis alba L. seedlings growing under natural radiation, we found that internode elongation is promoted by localized shading. This effect was observed with internodes receiving light with a high (>0.9) or a low (0.3) red (R) to far-red (FR) photon ratio. Selective removal of the different wavebands from the light impinging on the internodes showed that part of the response to fluence rate is due to photons in the R + FR range. The blue (B) component, most likely acting through a specific photoreceptor, also inhibited elongation. However, changes in the fluence rate of B light did not have detectable effects on the response of the internodes to R:FR ratio. Fibre-optic studies and measurements with integrating-cylinder sensors in even-aged populations of seedlings showed that both the quality and quantity of radiation received by the stems are profoundly influenced by changes in canopy density. When density is very low (leaf area index = LAI ≥ 1) only the R:FR ratio is reduced, due to FR reflected from nearby leaves. In the LAI range of 1 to 2, though a large proportion of the leaf area is still receiving full sunlight, the photon fluence rate at the stem level drops dramatically. These results suggest that in even-aged populations of LAI > 1 elongation growth is promoted by the low R:FR ratio and the reduced fluence rate. Perception of these two factors at the stem level may elicit morphological adaptations in the canopy before the onset of severe competition among neighbours for the resource of light.  相似文献   

16.
The effect of red (R) and far-red (FR) light on stem elongation and indole-3-acetic acid (IAA) levels was examined in dwarf and tall Pisum sativum L. seedlings. Red light reduced the extension-growth rate of etiolated seedlings by 70–90% after 3 h, and this inhibition was reversible by FR. Inhibition occurred throughout the growing zone. After 3 h of R, the level of extractable IAA in whole stem sections from the growing zone of etiolated plants either increased or showed no change. By contrast, extractable IAA from epidermal peels consistently decreased 3 h after R treatments. Decreases of 40% were observed for epidermal peels from the top 1 cm of tall plants receiving 3 h R. Brief R treatments resulted in smaller decreases in epidermal IAA levels and these decreases were not as great when FR followed R. In lightgrown plants, end-of-day FR stimulated growth during the following dark period in a photoreversible manner. The uppermost 1 cm of expanding third internodes was most responsive to the FR. Extractable IAA from epidermal peels from the upper 1 cm of third internodes increased by 30% or more 5 h after FR. When R followed the FR the increases were smaller. Levels of IAA in whole stem sections did not change and were twofold greater than in dark-grown plants. In both dark- and light-grown tall plants, IAA levels were lower in epidermal peels than in whole stem segments. These results provide evidence that IAA is compartmentalized at the tissue level within the growing stem and that phytochrome regulation of stem elongation rates may be partly based on modulating the level of IAA within the epidermis.Abbreviations IAA indole-3-acetic acid - R red light - FR farred light We thank Yu-Xian Zhu for helping to develop methods for IAA analysis, James Reid for supplying the genetic lines of Pisum and Richard Cyr for the use of microscopy equipment. This work was supported by NSF grant DCB-8801880 and by Hatch funds from the College of Agriculture and Life Sciences at Cornell University. The gas chromatograph-mass spectrometer was funded by NSF grant DMB-8505974 and funds from the College of Agriculture and Life Sciences at Cornell University. A preliminary report of some of these experiments has appeared in Plant Growth Substances, 1991 (Behringer et al. 1992 b).  相似文献   

17.
Robson P  Whitelam GC  Smith H 《Plant physiology》1993,102(4):1179-1184
Several growth parameters associated with the phytochrome-mediated shade avoidance syndrome have been measured in seedlings and mature plants of a wild-type and a hy3 mutant of Arabidopsis thaliana deficient in phytochrome B. Growth parameters were compared in plants grown in either white light (high red:far-red [R:FR] ratio) or white light plus added far-red (FR) light (low R:FR ratio). Wild-type Arabidopsis exhibited increased hypocotyl and petiole extension under a low, compared with a high, R:FR ratio. The hy3 mutant did not respond to low R:FR ratio by increase in hypocotyl or petiole length. Extension growth of wild-type plants was stimulated by brief end-of-day FR pulses, but similar treatment had no effect on extension growth of hy3 mutant plants. However, some responses to low R:FR ratio seen in the wild-type plants were also evident in the hy3 mutants. The number of days to bolting, the developmental stage at bolting, the leaf area, and the specific stem weight (weight per unit of length) all decreased in the wild-type and hy3 seedlings in response to low R:FR ratio. Low R:FR ratio caused a larger decrease in leaf area and specific stem weight in the mutant seedlings than in wild-type seedlings. The effects of low R:FR ratio on leaf area and specific stem weight were opposite to those of the hy3 lesion, which resulted in increased leaf area and specific stem weight in comparison with the wild type. Both leaf area and specific stem weight responses to low R:FR ratio also were unchanged in the ein mutant of Brassica rapa, known to be deficient in phytochrome B. These responses represent components of the shade-avoidance syndrome, and, consequently, the results indicate that phytochrome B cannot be solely responsible for the perception of R:FR ratio and the induction of shade-avoidance responses. The hypothesis is proposed that different phytochromes may be responsible for the regulation of extension growth and the regulation of lateral or radial expansion.  相似文献   

18.
Genger RK  Peacock WJ  Dennis ES  Finnegan EJ 《Planta》2003,216(3):461-466
Demethylation of DNA promotes flowering in plants from the vernalization-responsive ecotype C24 of Arabidopsis thaliana (L.) Heynh., but delays flowering in the ecotype Landsberg erecta which is not responsive to vernalization. To investigate these contrasting effects of low methylation we have monitored flowering times and expression of two repressors of flowering, FLC and FWA, in low-methylation plants from three late-flowering mutants in the ecotype Landsberg erecta. Demethylation of DNA decreased FLC expression in the vernalization-responsive mutants, but was not associated with a promotion of flowering; rather, in some lines, demethylation delayed flowering. The opposing effects of demethylation could be explained by its differential effect on the expression of two repressors of flowering. FLC was down-regulated in plants with low methylation, promoting flowering, while FWA was activated in response to demethylation, which probably delays the transition to flowering. Expression of the FWA gene did not delay flowering in plants of ecotype C24; our data suggest that the FWA protein of C24 may be non-functional.  相似文献   

19.
Summary Seedlings of shade-intolerant species react to alterations of the light climate caused by their neighbors with morphological changes that may influence the pattern of resource acquisition and utilization at the whole-canopy level. One such change, the increased stem elongation rate that is triggered by low red (R, 660 nm) to far-red (FR, 730 nm) ratios (R:FR) in dense canopies, might reduce the amount of assimilates available for leaf area expansion or root growth, and in that way affect resource capture by the canopy. We have tested this hypothesis by comparing the growth of both isolated individuals and canopies of the weed Amaranthus quitensis under conditions differing only in the spectral distribution of the incident light. When canopies received the full spectrum of sunlight, the stems were a large proportion (40–57%) of total biomass. Filtering the FR waveband (and hence raising the R:FR ratio to eliminate the neighbors' proximity-signal) resulted in shorter canopies with lighter stems. However, the growth of leaves and roots was not promoted by this treatment, indicating that the opportunity cost of the assimilates invested in the stems was nil or very small. Filtering the FR had no effect on biomass accumulation when plants were grown as isolated individuals. The higher growth of the canopics under full spectrum could be due to a higher light interception or to a higher efficiency of light conversion into biomass. The first possibility is weakened by the observation that filtering the FR had no effect on the dynamics of soil covering by the crops. The second is indirectly strengthened by results of an experiment with isolated plants showing that stem elongation, stem growth, and total plant biomass can be increased by reducing the flux of R light received by the stems without affecting the light climate of the leaves. Further work is needed to distinguish between these two possibilities; whatever the cause, our results show that the elongation responses to decreased R:FR may lead to a net increase in canopy productivity, and do not necessarily have a negative impact on the growth of resource-harvesting organs.  相似文献   

20.
Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had the opposite effects. The increase in plant height under the low R/FR ratio was accompanied by a reduction in the number of leaves. Population differences in growth form resembled the differences between plants grown in different light environments: plants from the shade population had rosettes with long erect leaves, whereas plants from the sun population formed prostrate rosettes with short leaves. Plants from the shade population were more responsive to the R/FR ratio than plants from the sun population: the increases in leaf length, plant height, and leaf area ratio under a low R/FR ratio were larger in the shade population. However, differences in plasticity were small compared to the population difference in growth form itself. We argue that plants do not respond optimally to shading and that developmental constraints might have limited the evolution of an optimal response. Received: 8 December 1996 / Accepted: 31 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号