首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The structural and functional properties of arginine kinase (AK) in alkaline conditions in the absence or presence of salt have been investigated. The conformational changes of AK during alkaline unfolding and salt-induced folding at alkaline pH were monitored using intrinsic fluorescence emission, binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate and circular dichroism. The results for the alkaline unfolded enzyme showed that much lower pH (11.0) was required to cause the complete loss of AK activity than was required to cause an obvious conformational change of the enzyme. Compared with the completely unfolded state in 5 M urea, the high pH denatured enzyme had some residual secondary and tertiary structure even at pH 13.0. Increasing the ionic strength by adding salt at pH 12.75 resulted in the formation of a relatively compact tertiary structure and a little new secondary structure with hydrophobic surface enhancement. These results indicate that the partially folded state formed under alkaline conditions may have similarities to the molten globule state which is compact, but it has a poorly defined tertiary structure and a native-like secondary structure.  相似文献   

2.
Acid-induced unfolding of the tetrameric glucose/xylose isomerase (GXI) from Streptomyces sp. NCIM 2730 has been investigated using intrinsic fluorescence, fluorescence quenching, second derivative spectroscopy, hydrophobic dye (1-anilino-8-naphthalene-sulfonate) binding and CD techniques. The pH dependence of tryptophanyl fluorescence of GXI at different temperatures indicated the presence of two stable intermediates at pH 5.0 and pH 3.0. The pH 3.2 intermediate was a dimer and exhibited molten globule-like characteristics, such as the presence of native-like secondary structure, loss of tertiary structure, increased exposure of hydrophobic pockets, altered microenvironment of tyrosine residues and increased accessibility to quenching by acrylamide. Fluorescence and CD studies on GXI at pH 5.0 suggested the involvement of a partially folded intermediate state in the native to molten globule state transition. The partially folded intermediate state retained considerable secondary and tertiary structure compared to the molten globule state. This state was characterized by its hydrophobic dye binding capacity, which is smaller than the molten globule state, but was greater than that of the native state. This state shared the dimeric status of the molten globule state but was prone to aggregate formation as evident by the Rayleigh light scattering studies. Based on these results, the unfolding pathway of GXI can be illustrated as: N-->PFI-->MG-->U; where N is the native state at pH 7.5; PFI is the partially folded intermediate state at pH 5.0; MG is the molten globule state at pH 3.2 and U is the monomeric unfolded state of GXI obtained in the presence of 6 M GdnHCl. Our results demonstrate the existence of a partially folded state and molten globule state on the unfolding pathway of a multimeric alpha/beta barrel protein.  相似文献   

3.
The involvement of molten globule state as a distinct intermediate in the denaturation process in proteins is well documented. However, the structural characterization of such an intermediate is far from complete. We have, using fluorescence and fluorescence quenching, studied the molten globule state of bovine alpha-lactalbumin. Unlike the native state, where all the 4 tryptophans are buried in the protein, 2 tryptophans are exposed in the molten globule state. Using the hydrophobic photoactivable reagent [3H]diazofluorene, we observe an increased hydrophobic exposure in the molten globule state. These structural characteristics conform to the current views on the molten globule state, i.e. it has similar secondary structure but a poorly defined tertiary structure. Our fluorescence studies indicate the involvement of a premolten globule state in the native to molten globule state transition. This premolten globule state exists at pH 5.0 and has a very compact structure involving increased hydrophobic interactions in the protein interior. These results are also supported by circular dichroism studies.  相似文献   

4.
The effect of polyanion, poly(vinylsulfate), used as a model of negatively charged surface, on ferric cytochrome c (ferricyt c) structure in acidic pH has been studied by absorbance spectroscopy, circular dichroism (CD), tryptophan (Trp) fluorescence and microcalorimetry. The polyanion induced only small changes in the native structure of the protein at neutral pH, but it profoundly shifted the acid induced high spin state of the heme in the active center of cyt c to a more neutral pH region. Cooperativity of the acidic transition of ferricyt c in the presence of the polyanion was disturbed, in comparison with uncomplexed protein, as followed from different apparent pK(a) values observed in a distinct regions of the ferricyt c electronic absorbance spectrum (4.55+/-0.08 in the 620 nm band region and 5.47+/-0.15 in the Soret region). The ferricyt c structure in the complex with the polyanion at acidic pH (below pH 5.0) has properties of a molten globule-like state. Its tertiary structure is strongly disturbed according to CD and microcalorimetry measurements; however, its secondary structure, from CD, is still native-like and ferricyt c is in a compact state as evidenced by quenched Trp fluorescence. These findings are discussed in the context of the molten globule state of proteins induced on a negatively charged membrane surface under physiological conditions.  相似文献   

5.
We have provided evidence that hen egg white lysozyme (HEWL) existed in alpha helical and beta structure dominated molten globule (MG) states at high pH and in the presence of tertiary butanol, respectively. Circular dichroism (CD), intrinsic fluorescence, ANS binding and acrylamide-induced fluorescence quenching techniques have been used to investigate alkali-induced unfolding of HEWL and the effect of tertiary butanol on the alkaline-induced state. At pH 12.75, HEWL existed as molten globule like intermediate. The observed MG-like intermediate was characterized by (i) retention of 77% of the native secondary structure, (ii) enhanced binding of ANS (approximately 5 times) compared to native and completely unfolded state, (iii) loss of the tertiary structure as indicated by the tertiary structural probes (near-UV, CD and Intrinsic fluorescence) and (iv) acrylamide quenching studies showed that MG state has compactness intermediate between native and completely unfolded states. Moreover, structural properties of the protein at isoelectric point (pI) and denatured states have also been described. We have also shown that in the presence of 45% tertiary butanol (t-butanol), HEWL at pH 7.0 and 11.0 (pI 11.0) existed in helical structure without much affecting tertiary structure. Interestingly, MG state of HEWL at pH 12.7 transformed into another MG state (MG2) at 20% t-butanol (v/v), in which secondary structure is mainly beta sheets. On further increasing the t-butanol concentration alpha helix was found to reform. We have proposed that formation of both alpha helical and beta sheet dominated intermediate may be possible in the folding pathway of alpha + beta protein.  相似文献   

6.
Alternatively folded states of an immunoglobulin   总被引:1,自引:0,他引:1  
Well-defined, non-native protein structures of low stability have been increasingly observed as intermediates in protein folding or as equilibrium structures populated under specific solvent conditions. These intermediate structures, frequently referred to as molten globule states, are characterized by the presence of secondary structure, a lack of significant tertiary contacts, increased hydrophobicity and partial specific volume as compared to native structures, and low cooperativity in thermal unfolding. The present study demonstrates that under acidic conditions (pH less than 3) the antibody MAK33 can assume a folded stable conformation. This A-state is characterized by a high degree of secondary structure, increased hydrophobicity, a native-like maximum wavelength of fluorescence emission, and a tendency toward slow aggregation. A prominent feature of this low-pH conformation is the stability against denaturant and thermal unfolding that is manifested in highly cooperative reversible phase transitions indicative of the existence of well-defined tertiary contacts. These thermodynamic results are corroborated by the kinetics of folding from the completely unfolded chain to the alternatively folded state at pH 2. The given data suggest that MAK33 at pH 2 adopts a cooperative structure that differs from the native immunoglobulin fold at pH 7. This alternatively folded state exhibits certain characteristics of the molten globule but differs distinctly from it by its extraordinary structural stability that is characteristic for native protein structures.  相似文献   

7.
Fatima S  Ahmad B  Khan RH 《IUBMB life》2007,59(3):179-186
Studies on the acid-induced denaturation of Mucor miehei lipase (E.C. 3.1.1.3) were performed by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy and binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS). Acid denaturation of the lipase showed loss of secondary structure and alterations in the tertiary structure in the pH range 4 to 2 and 7 to 2 respectively, suggesting that the lipase exists as an acid-unfolded state approximately pH 2.0. A further decrease in pH (from 2.0 to 1.0) resulted in a second transition, which corresponded to the formation of both secondary and tertiary structures. The acid unfolded state at around pH 2.0 has been characterized by significant loss of secondary structure and a small increase in fluorescence intensity with a blue shift of 2 nm, indicating shift of tryptophan residues to less polar environment. Interestingly, the lipase at pH 1.0 exhibits characteristics of molten globule, such as enhanced binding of hydrophobic dye (ANS), native-like secondary structure and slightly altered tryptophanyl environments. That the molten globule of the lipase at pH 1.0 also possesses native-like tertiary structure is an interesting observation made for this lipase.  相似文献   

8.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

9.
Nonnative protein structures having a compact secondary, but not rigid tertiary structure, have been increasingly observed as intermediate states in protein folding. We have shown for the first time during acid-induced unfolding of xylanase (Xyl II) the presence of a partially structured intermediate form resembling a molten globule state. The conformation and stability of Xyl II at acidic pH was investigated by equilibrium unfolding methods. Using intrinsic fluorescence and CD spectroscopic studies, we have established that Xyl II at pH 1.8 (A-state) retains the helical secondary structure of the native protein at pH 7.0, while the tertiary interactions are much weaker. At variance, from the native species (N-state), Xyl II in the A-state binds 1-anilino-8-sulfonic acid (ANS) indicating a considerable exposure of aromatic side chains. Lower concentration of Gdn HCl are required to unfold the A-state. For denaturation by Gdn HCl, the midpoint of the cooperative unfolding transition measured by fluorescence for the N-state is 3.5 +/- 0.1 M, which is higher than the value (2.2 +/- 0.1 M) observed for the A-state at pH 1.8. This alternatively folded state exhibits certain characteristics of the molten globule but differs distinctly from it by its structural stability that is characteristic for native proteins.  相似文献   

10.
We report the accumulation of an acid unfolded (UA) state and a molten globule (MG) state in the acid induced unfolding pathway of unmodified preparation of stem bromelain (SB) [EC 3.4.22.32], a cystein protease from Ananas cosmosus. The conformation of SB was examined over the pH 0.8-3 regions by circular dichroism, tryptophanyl fluorescence, 1-anilino-8-naphthalenesulfonate (ANS) binding, and tryptophanyl fluorescence quenching study. The pH 0.8-3.0 regions were selected to study the acid induced unfolding of SB because no autolysis of the enzyme was observed in these pH regions. The results show that SB at pH 2.0 is maximally unfolded and characterizes by significant loss of secondary structure ( approximately 80%) and almost complete loss of tertiary contacts. However, on further decreasing the pH to 0.8 a MG state was observed, with secondary structure content similar to that of native protein but no tertiary structure. We also made a comparative study of these acid induced states of SB with acid induced states of modified stem bromelain (mSB), reported by our group earlier [Eur. J. Biochem. (2002) 269, 47-52]. We have shown that modification of SB for inactivation significantly affects the N-UA transition but neither affects the UA-MG transition nor the stability of the MG state.  相似文献   

11.
The CD40 ligand molecule is unique, consisting of a receptor-binding domain anchored by an isoleucine zipper moiety. Exact determination of the multimeric state and its tendency to form molten globules has not been elucidated. Corroborating evidence of a trimerized molecule in aqueous solution was obtained from size-exclusion chromatography, laser light scattering, and analytical ultracentrifugation. A reversible acid-denatured molten globule state was observed from circular dichroism and fluorescence spectroscopy data. The molten globule state was characterized by a loss of tertiary structure with associated retention of secondary structure near pH 3. Once returned to pH 7, the acid-denatured state refolded over the course of 7 days resulting in approximately 90% recovery of the native structure. The molten globule state was characterized by a broadening of structural features in the second-derivative spectra of Fourier transform infrared spectroscopy. A component band at 1650 cm(-1) was shown to be alpha-helix and originate from amide carbonyl vibrations of the isoleucine zipper. Differential scanning calorimetry measurements characterized the pH-sensitive molten globule state at pH 3.3 as one lacking a well-defined unfolding transition with an accompanying baseline shift at 58 degrees C (a consequence of increased heat capacity). The tendency to form molten globules during acid denaturation stress permits an opportunity to study the process of partial protein unfolding with implications concerning stability. Although reversible molten globules can be formed, it is important to recognize the unusual nature since the molten globule state is formed exclusively within the beta-sheet receptor-binding region.  相似文献   

12.
The denaturation of beta-trypsin induced by urea was investigated by fluorescence and circular dichroism. A transient denatured state was found at 2 M urea in both intrinsic fluorescence spectrum and bis-(8-anilino-1-naphtalene sulfonate) (bis-ANS) binding. In addition, the absence of tertiary contacts and presence of secondary structure for this state, are consistent with an intermediate equilibrium state having features of molten globule.  相似文献   

13.
Acid unfolding pathway of conalbumin (CA), a monomeric glycoprotein from hen egg white, has been investigated using far- and near-UV CD spectroscopy, intrinsic fluorescence emission, extrinsic fluorescence probe 1-anilino-8-napthalene sulfonate (ANS) and dynamic light scattering (DLS). We observe pH-dependent changes in secondary and tertiary structure of CA. It has native-like α-helical secondary structure at pH 4.0 but loss structure at pH 3.0. The CA existed exclusively as a pre-molten globule state and molten globule state in solution at pH 4.0 and pH 3.0, respectively. The effect of pH on the conformation and thermostability of CA points toward its heat resistance at neutral pH. DLS results show that MG state existed as compact form in aqueous solutions with hydrodynamic radii of 4.7 nm. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of an intermediate state, partly unfolded, in-between native and unfolded states.  相似文献   

14.
Kundu A  Kishore N 《Biopolymers》2004,73(4):405-420
The thermal denaturation of alpha-lactalbumin was studied at pH 7.0 and 9.0 in aqueous 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) by high-sensitivity differential scanning calorimetry. The conformation of the protein was analyzed by a combination of fluorescence and circular dichroism measurements. The most obvious effect of HFIP was lowering of the transition temperature with an increase in the concentration of the alcohol up to 0.30M, beyond which no calorimetric transition was observed. Up to 0.30M HFIP the calorimetric and van't Hoff enthalpy remained the same, indicating the validity of the two-state approximation for the thermal unfolding of alpha-lactalbumin. The quantitative thermodynamic parameters accompanying the thermal transitions have been evaluated. Spectroscopic observations confirm that alpha-lactalbumin is in the molten globule state in the presence of 0.50M HFIP at pH 7.0 and 0.75M HFIP at pH 9.0. The results also demonstrate that alpha-lactalbumin in the molten globule state undergoes a noncooperative thermal transition to the denatured state. It is observed that two of four tryptophans are exposed to the solvent in the HFIP induced molten globule state of alpha-lactalbumin compared to four in the 8.5M urea induced denatured state of the protein. It is also observed that the HFIP induced molten globule states at the two pH values are different from the acid induced molten globule state (A state) of alpha-lactalbumin.  相似文献   

15.
The trichloroacetic acid (TCA)-induced unfolding of aminoacylase was investigated by measurement of aggregation, enzyme activity, intrinsic fluorescence, 8-anilino-1-naphthalene sulfonate (ANS) binding, circular dichroism, and native polyacrylamide gel electrophoresis. The results showed that TCA caused inactivation and unfolding of aminoacylase. Intrinsic fluorescence results demonstrated that the TCA-induced transition of aminoacylase was characterized by two distinct stages during which the fluorescence emission maxima first redshifted to 338 nm and then blueshifted to 332 nm, close to that of native protein. ANS binding measurements revealed that TCA-denatured aminoacylase had a large hydrophobic area for TCA concentration near 2 mM. Comparison of the relative changes in wavelength shift and in the ANS intensity suggested the formation of a stable molten globule state of aminoacylase with a slightly disrupted tertiary structure and more hydrophobic surface than the native protein. Far-UV circular dichroism results provided further support that TCA induced the formation of two partially folded intermediates each with an enhanced native-like secondary structure. The results collectively suggest that a TCA-induced molten globule state is formed and stabilized during unfolding of aminoacylase and that association of the molten globule state may account for precipitation of the protein when denatured by TCA.  相似文献   

16.
The molten globule state of cytochrome c is the major intermediate of protein folding. Elucidation of the thermodynamic mechanism of conformational stability of the molten globule state would enhance our understanding of protein folding. The formation of the molten globule state of cytochrome c was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS, at low concentrations. The refolding states of the protein were monitored by spectroscopic techniques including circular dichroism (CD), visible absorbance and fluorescence. The effect of n-alkyl sulfates on the structure of acid-unfolded horse cytochrome c at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of the molten globule state. The addition of n-alkyl sulfates to the unfolded state of cytochrome c appears to support the stabilized form of the molten globule. The m-values of the refolded state of cytochrome c by SOS, SDeS, SDS, and STS showed substantial variation. The enhancement of m-values as the stability criterion of the molten globule state corresponded with increasing chain length of the cited n-alkyl sulfates. The compaction of the molten globule state induced by SDS, as a prototype for other n-alkyl sulfates, relative to the unfolded state of cytochrome c was confirmed by Stokes radius and thermal transition point (T(m)) measured by microviscometry and differential scanning calorimetry (DSC), respectively. Thus, hydrophobic interactions play an important role in stabilizing the molten globule state.  相似文献   

17.
Yuan C  Byeon IJ  Poi MJ  Tsai MD 《Biochemistry》1999,38(10):2919-2929
Previous NMR studies have shown that many phospholipase A2 (PLA2, from bovine pancreas, overexpressed in Escherichia coli) mutants display some properties reminiscent of a molten globule state. Further NMR analyses for some of the mutants indicated that formation of the "molten globule-like state" is a pH-dependent phenomenon. The mutants I9Y and I9F showed perturbed NMR properties throughout the pH range studied, while the mutants H48A and C44A/C105A displayed native-like spectra at neutral pH but molten globule-like ones under acidic conditions, with a "transition pH" around 4. On the other hand, wild-type PLA2 exhibits exceptional pH stability and turns into a similar molten globule-like state only under highly acidic conditions such as 1 M HCl. The H48A mutant was used to rigorously establish the property of the molten globule-like state of PLA2 mutants. The results of far-UV CD, near-UV CD, and ANS-binding fluorescence suggest that H48A retains native-like secondary structures but loses tertiary structure during the conformational transition. However, the tertiary structure is not completely lost, as evidenced by the retention of some long-range NOEs in two-dimensional NOESY spectra. The conclusion was further substantiated by three-dimensional NOESY-HSQC experiments on a 15N-labeled H48A sample. It was revealed that the molten globule-like state at mildly acidic pH retained some rigid tertiary structure, which consisted of partial alpha-helix II (Y52-L58), alpha-helix III (D59-V63), beta-wing (S74-S85) and partial alpha-helix IV (A90-N97). These residual tertiary structures grouped in half of the protein could be attributed to stabilization by some of the disulfide bonds. The extreme sensitivity of the PLA2 structure to site-directed mutagenesis is unprecedented. It is interesting to note that most of the functional residues (the active site, the hydrophobic channel, the interfacial binding site, and the calcium-binding loop) are located in the remainder of the protein, which is well disrupted in tertiary interactions.  相似文献   

18.
Certain partly ordered protein conformations, commonly called “moltenglobule states,” are widely believed to represent protein folding intermediates. Recentstructural studies of molten globule states ofdifferent proteins have revealed features whichappear to be general in scope. The emergingconsensus is that these partly ordered forms exhibit a high content of secondary structure, considerable compactness, nonspecific tertiary structure, and significant structural flexibility. These characteristics may be used to define ageneral state of protein folding called “the molten globule state,” which is structurally andthermodynamically distinct from both the native state and the denatured state. Despite exaatensive knowledge of structural features of afew molten globule states, a cogent thermodynamic argument for their stability has not yetbeen advanced. The prevailing opinion of thelast decade was that there is little or no enthalpy difference or heat capacity differencebetween the molten globule state and the unfolded state. This view, however, appears to beat variance with the existing database of protein structural energetics and with recent estimates of the energetics of denaturation of α-lactalbumin, cytochrome c, apomyoglobin, and T4 lysozyme. We discuss these four proteins at length. The results of structural studies, together with the existing thermodynamic values for fundamental interactions in proteins, provide the foundation for a structural thermodynamic framework which can account for the observed behavior of molten globule states. Within this framework, we analyze the physical basis for both the high stability of several molten globule states and the low probability of other protential folding intermediates. Additionally, we consider, in terms of reduced enthalpy changes and disrupted cooperative interactions, the thermodynamic basis for the apparent absence of a thermally induced, cooperative unfolding transition for some molten globule states. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Several reports have pointed out the existence of intermediate states (both kinetic and equilibrium intermediate) between the native and the denatured states. The molten globule state, a compact intermediate state in which the secondary structure is formed but the tertiary structure fluctuates considerably, is currently being studied intensively because of its possible implication in the folding process of several proteins. We have examined the thermal stability of horse cytochrome c at low pH between 2.0 and 3.2 and different potassium chloride concentrations by absorbance of the Soret band, far and near-ultraviolet circular dichroism (u.v. c.d.) and tryptophan fluorescence using a multidimensional spectrophotometer. The concentration of potassium chloride ranged from 0 M to 0.5 M. The experimental thermal denaturation curves show that: (1) the helical content of cytochrome c remains stable at higher temperature when the concentration of salt is increased; whereas (2) the extent of ordering of the tertiary structure is weakly dependent on salt concentration; and (3) for cytochrome c, the stabilization of the molten globule state is induced by the binding of anions. Other salts such as NaCl, LiCl, potassium ferricyanide (K3Fe(CN)6) and Na2SO4 may also be used to stabilize the molten globule state. The thermodynamic analysis of the denaturation curves of c.d. at 222 nm and c.d. at 282 nm shows that, whereas a two-state (native and denatured) transition is observed at low-salt concentration, the far and near-u.v. c.d. melting curves of cytochrome c do not coincide with each other at high-salt concentration, and a minimum of three different thermodynamic states (IIb, intermediate or IIc, and denatured) is necessary to achieve a sufficient analysis. The intermediate state (called IIc) is attributed to the molten globule state because of its high secondary structure content and the absence of tertiary structure. Therefore, at low pH, cytochrome c is present in at least four states (native, IIb, IIc and denatured) depending on the salt concentration and temperature. The thermodynamic parameters, i.e. the Gibbs free energy differences (delta G), the enthalpy differences (delta H), the midpoint temperatures (Tm) of the transition (IIb in equilibrium intermediate (IIc in equilibrium denatured) are determined. We also give estimates of the heat capacity differences (delta Cp) from the temperature dependence of the enthalpy differences. The enthalpy change and the heat capacity difference of the IIc in equilibrium denatured transition are non-zero. The number of charges (protons or chloride anions) released upon transitions are determined by analysing the pH and chloride anion concentration dependence of the Gibbs free energy.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
S Cai  B R Singh 《Biochemistry》2001,40(50):15327-15333
Botulinum neurotoxins are produced by anaerobic Clostridium botulinum in an inactive form. The endopeptidase activity of type A botulinum neurotoxin (BoNT/A) is triggered by reduction of its disulfide bond between its heavy chain and light chain. By using circular dichroism spectroscopy, we show that, upon reduction of BoNT/A and under physiological temperature (37 degrees C), the BoNT/A loses most of its native tertiary structure, while retaining most of its secondary structure. This type of structure is characterized as a molten globule type conformation, which was further confirmed for BoNT/A by the characteristic binding of 1-anilinonaphthalene-8-sulfonic acid. Under nonreducing conditions where the interchain disulfide bond is intact, the enzymatically inactive BoNT/A did not show a molten globule type of structure. A temperature profile of the structure and enzyme activity of BoNT/A revealed that, under reducing conditions, there was a strong correlation in the existence of the molten globule structure and optimum endopeptidase activity at about 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号