首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular-genetic mechanisms of regeneration of adult newt (Pleurodeles waltl) retina were studied. For the first time, a comparative analysis of the expression of regulatory genes Pax6, Otx2, and Six3 and FGF2 genes encoding signal molecules was performed in the normal retinal pigment epithelium (RPE) and retina and at successive stages of retina regeneration. Cell differentiation types were determined using genetic markers of cell differentiation in the RPE (RPE65) and the retina (βII-tubulin and Rho). Activation of the expression of neurospecific genes Pax6 and Six3 and the growth factor gene FGF2 and suppression of activation of the regulatory gene Otx2 and the RPE65 were observed at the stage of multipotent neuroblast formation in the regenerating retina. The expression of genes Pax6, Six3, and Fgf2 was retained at a later stage of retina regeneration at which the expression of retinal differentiation markers, the genes encoding β II-tubulin (βII-tubulin) and rhodopsin (Rho), was also detected. We assume that the above regulatory genes are multifunctional and control not only transdifferentiation of RPE cells (the key stage of retina regeneration) but also differentiation of regenerating retina cells. The results of this study, demonstrating coexpression of Pax6, Six3, Fgf2, βII-tubulin, and Rho genes, provide indirect evidence for the interaction of regulatory and specific genes during retina regeneration.  相似文献   

2.
Two groups of proteins were isolated from the retina and pigment epithelium of eight-day-old chick embryos. Experiments with suspension cultures of retinal cells demonstrated that only the retinal extracts and the fraction of its acidic proteins can stimulate cell aggregation in vitro. Analysis by the method of high-performance liquid chromatography showed that fractions of acidic and basic retinal proteins, which markedly differ in their electric charge and biological activity, have similar composition. To study the effect of these proteins on the morphological and functional state of pigment epitheliumin vitro, a new experimental model is proposed, with the posterior segment of the newt (Pleurodeles waltl) eye used as a test tissue. The fraction of basic proteins isolated from the chick embryonic pigment epithelium stabilized cell differentiation in the newt pigment epithelium. The analyzed proteins proved to be biologically active at extremely low doses, corresponding to 10−12 M solutions.  相似文献   

3.
4.
Cellular composition of the peripheral region of the eye in amphibians and mammals as well as embryonic fissure in amphibians was studied. Different distributions of proliferating cells in retinal pigment epithelium have been revealed in adult amphibians (newt, axolotl, and Xenopus). Single cells incorporated [3H]thymidine in the newt and Xenopus; 0.4% cells, in the axolotl. An embryonic fissure was observed in the eye of the axolotl. Pigment epithelial cells in the embryonic palpebral region actively proliferated: about 20% cells incorporated [3H]thymidine. Proliferating cells were also localized in the ciliary marginal zone of the retina in all studied amphibians, particularly, in the axolotl. In newborn hamsters, [3H]thymidine-labeled cells have been revealed in the pigment epithelium as well as in the outer pigmented and inner unpigmented layers of the ciliary body. Proliferative activity of the peripheral regions of the eye is due to eye growth in adult amphibians and newborn hamsters. After retinectomy, the retina is regenerated from the cells of the growth ciliary marginal zone in all amphibians, pigment epithelial cells in the newt, and pigment epithelial cells of the embryonic fissure in the axolotl. Heterogeneous composition of the pigment epithelium in the newt and axolotl reflects high transdifferentiation potential of these regions. Structural comparison of the peripheral region of the eye in amphibians and mammals demonstrate that the ciliary body of mammals containing stem cells is homologous to the ciliary marginal zone of amphibians containing multipotent cells.  相似文献   

5.
The adult newt retina explanted together with the posterior eye wall and cultivated for a short time in a serum-free medium was tested as an experimental model by several criteria, including the expression of protein markers of the main retinal cell types. Some differences in the expression of specific photoreceptor, interneuron, and glial cell proteins as well as the localization of acetylcholinesterase activity were found during in vitro cultivation. Using this model, preliminary tests of new cell adhesion glycoproteins from the bovine retina and pigment epithelium were conducted, and the role of pigment epithelial cell proteins in improving cell viability in the cultivated newt retina was revealed. Moreover, the fraction of basic adhesion proteins from the bovine pigment epithelium improved the survival potential of the macroglial (Muller) cell population, compared to that in the control.  相似文献   

6.
7.
We have identified and partially purified interstitial retinol-binding protein (IRBP) from the subretinal space of the rat. It appeared to be glycosylated. Its apparent mol. wt was 270,000 by gel-filtration and 144,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Rat IRBP cross-reacted with anti-bovine IRBP sheep and rabbit sera, bound all-trans-[15-3H] retinol and was bound by concanavalin A. IRBP was not detected in the cytosols of the neural retina or retinal pigment epithelium and choroid. This distribution was confirmed by immunocytochemistry using a fluorescence-labeled second antibody. Immunospecific fluorescence was most intense in the interphotoreceptor matrix in a 6.5 μm band adjacent to the retinal pigment epithelium. It was less intense over the remainder of the rod outer segment layer and was comparatively faint over the inner segment region. Its occurrence in the interstitial space between the photoreceptors and retinal pigment epithelium coupled with the fact it bound all-trans-[15-3H] retinol supports the concept that it may be implicated in the transport of retinoids between the retina and the retinal pigment epithelium during the visual cycle. When incubated with [3H]leucine or [3H]glucosamine, isolated retinas (but not retinal pigment epithelium and choroid) secreted labeled IRBP into the medium. This suggests that the retina plays a role in regulating the amount of IRBP in the subretinal space.  相似文献   

8.
9.
Tyrosinase is the key enzyme in melanin synthesis, and is expressed in the pigment epithelium of the retina, a cell layer derived from the optic cup; and in neural crest-derived melanocytes of skin, hair follicle, choroid, and iris. The tyrosinase gene has been cloned and shown to map to the well-characterized c-locus (albino locus) of the mouse. Subsequent studies demonstrated that a functional tyrosinase minigene was able to rescue the albino phenotype in transgenic mice. The transgene was expressed in a cell type-specific manner in skin and eye. During development of the mouse, the tyrosinase gene is expressed in the pigment epithelium of the retina as early as day 10.5 of gestation. In the hair follicle, tyrosinase gene expression is detected from day 16.5 onwards. This cell-type–specific expression is largely reproduced in transgenic mice. Our results suggest that sequences in the immediate vicinity of the mouse tyrosinase gene are sufficient to provide cell type-specificity and developmental regulation in melanocytes and the pigment epithelium.  相似文献   

10.
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.  相似文献   

11.

Background/Objectives

Retinaldehyde dehydrogenase 2 (RALDH2) has been implicated in regulating all-trans-retinoic acid (atRA) synthesis in response to visual signals in animal models of myopia. To explore the potential role of retinaldehyde dehydrogenase (RALDH) enzymes and atRA in human postnatal ocular growth, RALDH activity, along with the distribution of RALDH1, RALDH2, and RALDH3 in the postnatal eye was determined.

Methodology

Retina, retinal pigment epithelium (RPE), choroid, and sclera were isolated from donor human eyes. RALDH catalytic activity was measured in tissue homogenates using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Homogenates were compared by western blotting for RALDH1, RALDH2, and RALDH3 protein. Immunohistochemistry was used to determine RALDH1 and RALDH2 localization in posterior fundal layers of the human eye.

Principal Findings

In the postnatal human eye, RALDH catalytic activity was detected in the choroid (6.84 ± 1.20 pmol/hr/ug), RPE (5.46 ± 1.18 pmol/hr/ug), and retina (4.21 ± 1.55 pmol/hr/ug), indicating the presence of active RALDH enzymes in these tissues. RALDH2 was most abundant in the choroid and RPE, in moderate abundance in the retina, and in relatively low abundance in sclera. RALDH1 was most abundant in the choroid, in moderate abundance in the sclera, and substantially reduced in the retina and RPE. RALDH3 was undetectable in human ocular fundal tissues. In the choroid, RALDH1 and RALDH2 localized to slender cells in the stroma, some of which were closely associated with blood vessels.

Conclusions/Significance

Results of this study demonstrated that: 1) Catalytically active RALDH is present in postnatal human retina, RPE, and choroid, 2) RALDH1 and RALDH2 isoforms are present in these ocular tissues, and 3) RALDH1 and RALDH2 are relatively abundant in the choroid and/or RPE. Taken together, these results suggest that RALDH1 and 2 may play a role in the regulation of postnatal ocular growth in humans through the synthesis of atRA.  相似文献   

12.
13.
Heparan sulphate proteoglycans (HSPGs) are known to be crucial for signalling by the secreted Wnt, Hedgehog, Bmp and Fgf proteins during invertebrate development. However, relatively little is known about their effect on developmental signalling in vertebrates. Here, we report the analysis of daedalus, a novel zebrafish pectoral fin mutant. Positional cloning identified fgf10 as the gene disrupted in daedalus. We find that fgf10 mutants strongly resemble zebrafish ext2 and extl3 mutants, which encode glycosyltransferases required for heparan sulphate biosynthesis. This suggests that HSPGs are crucial for Fgf10 signalling during limb development. Consistent with this proposal, we observe a strong genetic interaction between fgf10 and extl3 mutants. Furthermore, application of Fgf10 protein can rescue target gene activation in fgf10, but not in ext2 or extl3 mutants. By contrast, application of Fgf4 protein can activate target genes in both ext2 and extl3 mutants, indicating that ext2 and extl3 are differentially required for Fgf10, but not Fgf4, signalling during limb development. This reveals an unexpected specificity of HSPGs in regulating distinct vertebrate Fgfs.  相似文献   

14.
Adult zebrafish regenerate their appendages (fins) after amputation including the regeneration of bone structures (fin rays). Fibroblast growth factor (Fgf) signaling, which is involved in morphogenetic processes during development, has been shown to be essential for the process of fin regeneration. Moreover, mutations in Fgf pathway component genes lead to abnormal skeletal growth in teleosts and mammals, including humans, illustrating the importance of Fgf signaling in the growth control of tissues. Here, we revisited Fgf signaling pathway component expression by RNA in situ hybridization to test for the expression of about half of the ligands and all receptors of the pathway in the regenerating zebrafish fin. Expression patterns of fgf7, fgf10b, fgf12b, fgf17b and fgfr1b have not been reported in the literature before. We summarize and discuss known and novel localization of expression and find that all five Fgf receptors (fgfr1a, fgfr1b, fgfr2, fgfr3 and fgfr4) and most of the tested ligands are expressed in specific regions of the regenerate. Our work provides a basis to study domain specific functions of Fgf signaling in the regenerating teleost appendage.  相似文献   

15.
16.
To gain insight into the mechanisms of Lmx1b function during ocular morphogenesis, we have studied the roles of lmx1b.1 and lmx1b.2 during zebrafish eye development. In situ hybridization and characterization of transgenic lines in which GFP is expressed under lmx1b.1 regulatory sequence show that these genes are expressed in periocular tissues and in a pattern conserved with other vertebrates. Anti-sense morpholinos against lmx1b.1 and lmx1b.2 result in defective migration of periocular mesenchymal cells around the eye and lead to apoptosis of these cells. These defects in the periocular mesenchyme are correlated with a failure in fusion of the choroid fissure or in some instances, more severe ventral optic cup morphogenesis phenotypes. Indeed, by blocking the death of the periocular mesenchyme in Lmx1b morphants, optic vesicle morphogenesis is largely restored. Within the retina of lmx1b morphants, Fgf activity is transiently up-regulated and these morphants show defective naso-temporal patterning. Epistasis experiments indicate that the increase in Fgf activity is partially responsible for the ocular anomalies caused by loss of Lmx1b function. Overall, we propose zebrafish lmx1b.1 and lmx1b.2 promote the survival of periocular mesenchymal cells that influence multiple signaling events required for proper ocular development.  相似文献   

17.
Summary Myeloid bodies are believed to be differentiated areas of smooth endoplasmic reticulum membranes, and they are found within the retinal pigment epithelium in a number of lower vertebrates. Previous studies demonstrated a correlation between phagocytosis of outer segment disc membranes and myeloid body numbers in the retinal pigment epithelium of the newt. To test the hypothesis that myeloid bodies are directly involved in outer segment lipid metabolism and to further characterize the origin and functional significance of these organelles, we examined the effects on myeloid bodies of eliminating the source of outer segment membrane lipids (neural retina removal) and of the subsequent return of outer segments (retinal regeneration) in the newt Notophthalmus viridescens. Light- and electron-microscopic analysis demonstrated that myeloid bodies disappeared from the pigment epithelium within six days of neural retina removal. By week 6 of regeneration, rudimentary photoreceptor outer segments were present but myeloid bodies were still absent. However, at this time, the smooth endoplasmic reticulum in some areas of the retinal pigment epithelial cells had become flattened, giving rise to small (0.5 m long), two-to-four layer-thick lamellar units, which are myeloid body precursors. Small myeloid bodies were first observed one week later at week 7 of retinal regeneration. This study revealed that newt myeloid bodies are specialized areas of smooth endoplasmic reticulum. It also showed that a contact between functional photoreceptors and the retinal pigment epithelium is essential to the presence of myeloid bodies in the epithelial cells.  相似文献   

18.
V I Mitashov 《Ontogenez》1978,9(2):183-188
It was concluded that the newly synthesized melanin granules were replaced in the pigmented tissues of the newt eye on the basis of redistribution of the cells of pigment epithelium of retina and iris labelled by 3H-DOPA 2.5 and 6.5 months after the isotope injection. The replacement of melanin granules and, correspondingly, melanin synthesis proceed more actively in the peripheral zones of the pigment epithelium of retina. The depigmentation of cells preceding the melanin synthesis appears to be realized with the participation of macrophages.  相似文献   

19.
A flux chamber was utilized for in vitro studies of a membrane formed by the retinal pigment epithelium and choroid of the eye of the toad (Bufo arenarum and Bufo marinus). A transmembrane potential of 20 to 30 mv was found, the pigment epithelium surface positive with respect to the choroidal surface. Unidirectional fluxes of chloride, sodium, potassium, and calcium were determined in the absence of an electrochemical potential difference. A net transfer of chloride from pigment epithelium to choroid accounted for a major fraction of the mean short-circuit current. A small net flux of sodium from choroid to pigment epithelium was detected in Bufo marinus. In both species of toads, however, about one-third of the mean short-circuit current remained unaccounted for. Manometric determinations of bicarbonate suggested an uptake of this ion at the epithelial surface of the membrane but did not provide evidence of a relationship between this process and the short-circuit current.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号