首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Database and analyses of known alternatively spliced genes in plants   总被引:8,自引:0,他引:8  
Zhou Y  Zhou C  Ye L  Dong J  Xu H  Cai L  Zhang L  Wei L 《Genomics》2003,82(6):584-595
Alternative splicing is an important cellular mechanism that increases the diversity of gene products. The number of alternatively spliced genes reported so far in plants is much smaller than that in mammals, but is increasing as a result of the explosive growth of available EST and genomic sequences. We have searched for all alternatively spliced genes reported in GenBank and PubMed in all plant species under Viridiplantae. After careful merging and manual review of the search results, we obtained a comprehensive, high-quality collection of 168 genes reported to be alternatively spliced in plants, spanning 44 plant species (March 22, 2003 update). We developed a relational database with Web-based user interface to store and present the data, named the Plant Alternative Splicing Database (PASDB), freely available at http://pasdb.genomics.org.cn. We analyzed the functional categories that these genes belong to using the Gene Ontology. We also analyzed in detail the biological roles and gene structures of the four genes that are known to be alternatively spliced in more than one plant species. Finally, we studied the structural features of the splice sites in the alternatively spliced genes.  相似文献   

3.
4.
5.
6.
7.
8.
Alternative splicing (AS) is a key regulatory mechanism for the development of different tissues; however, not much is known about changes to alternative splicing during aging. Splicing events may become more frequent and widespread genome‐wide as tissues age and the splicing machinery stringency decreases. Using skin, skeletal muscle, bone, thymus, and white adipose tissue from wild‐type C57BL6/J male mice (4 and 18 months old), we examined the effect of age on splicing by AS analysis of the differential exon usage of the genome. The results identified a considerable number of AS genes in skeletal muscle, thymus, bone, and white adipose tissue between the different age groups (ranging from 27 to 246 AS genes corresponding to 0.3–3.2% of the total number of genes analyzed). For skin, skeletal muscle, and bone, we included a later age group (28 months old) that showed that the number of alternatively spliced genes increased with age in all three tissues (< 0.01). Analysis of alternatively spliced genes across all tissues by gene ontology and pathway analysis identified 158 genes involved in RNA processing. Additional analysis of AS in a mouse model for the premature aging disease Hutchinson–Gilford progeria syndrome was performed. The results show that expression of the mutant protein, progerin, is associated with an impaired developmental splicing. As progerin accumulates, the number of genes with AS increases compared to in wild‐type skin. Our results indicate the existence of a mechanism for increased AS during aging in several tissues, emphasizing that AS has a more important role in the aging process than previously known.  相似文献   

9.
10.
Alternative splicing: increasing diversity in the proteomic world   总被引:45,自引:0,他引:45  
  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
mRNA前体选择性剪接的研究进展   总被引:3,自引:0,他引:3  
延锦春  陈誉华  宋今丹  陈澄 《生命科学》2002,14(3):150-152,185
mRNA前体的选择性剪接(又称可变剪/拼接)是真核生物的一种基本而又重要的调控机制,它精细协调基因的功能,高效调节基因的定量表达以及蛋白功能的多样化,影响主要发育方向的决定,对细胞的分化、发育、生理功能和病理状态都有重要意义。选择性剪接与许多人类疾病密切相关。目前在生物信息学领域已有选择性剪接数据库的构建,用于选择性剪接的信息存储和处理。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号