首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recent studies have indicated that the insulin-like growth factors (IGFs) stimulate skeletal myoblast proliferation and differentiation. However, the question of whether IGFs are required for myoblast differentiation has not been resolved. To address this issue directly, we used a retroviral vector (LBP4SN) to develop a subline of mouse C2 myoblasts (C2-BP4) that constitutively overexpress IGF binding protein-4 (IGFBP-4). A control C2 myoblast subline (C2-LNL6) was also developed by using the LNL6 control retroviral vector. C2-BP4 myoblasts expressed sixfold higher levels of IGFBP-4 protein than C2-LNL6 myoblasts. 125I-IGF-I cross linking indicated that IGFBP-4 overexpression reduced IGF access to the type-1 IGF receptor tenfold. At low plating densities, myoblast proliferation was inhibited, and myoblast differentiation was abolished in C2-BP4 cultures compared with C2-LNL6 cultures. At high plating densities in which nuclear numbers were equal in the two sets of cultures, C2-BP4 myoblast differentiation was inhibited completely. Differentiation was restored in C2-BP4 cells by treatment with high levels of exogenous IGF-I or with des(1–3)IGF-I, an analog of IGF-I with reduced affinity for IGFBPs. These findings confirm the hypothesis that positive differentiation signals from the IGFs are necessary for C2 myoblast differentiation, and they suggest that the present model of myogenic differentiation, which involves only negative external control of differentiation by mitogens, may be incomplete. J. Cell. Physiol. 175:109–120, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
To study the roles of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) in the differentiation of tongue myoblasts, we established a mouse tongue organ culture system and examined the effects of exogenous IGF-I, exogenous IGFBP4, 5, 6, and des(1-3)IGF-I, an IGF-I analogue with reduced affinity for IGFBPs, on the differentiation of tongue myoblasts. The exogenous IGF-I stimulated differentiation of tongue myoblasts and induced the expressions of endogenous IGFBP4, 5, and 6, suggesting that these IGFBPs were involved in the regulation of tongue myoblast differentiation by the IGF-I. Exogenous IGFBP4 and 5 slightly stimulated early tongue myoblast differentiation in which myogenin was involved. The stimulation seems to be due to the protection of endogenous IGFs from proteolytic degradation by the binding of these IGFBPs to endogenous IGFs. A low concentration of des(1-3)IGF-I stimulated tongue myoblast differentiation, whereas high concentrations of des(1-3)IGF-I inhibited it. The abnormal shape of the tongue, low cell density and low staining intensity with hematoxylin and eosin in tongues treated with high concentrations of des(1-3)IGF-I, suggest that the inhibition is due to abnormal reactions of tongue tissues to the toxicity caused by high concentrations of des(1-3)IGF-I. From these results, we suggest that IGFBPs may function to regulate the differentiation of mouse tongue myoblasts by controlling the concentration of free IGFs within a range suitable for the progress of tongue myoblast differentiation.  相似文献   

4.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

5.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

6.
7.
8.
IGF-I and IGF-II are thought to be unique in their ability to promote muscle cell differentiation. Murine C2 myoblasts differentiate when placed into low serum media (LSM), accompanied by increased IGF-II and IGF binding protein-5 (IGFBP-5) production. Addition of 20 ng/ml TNF alpha on transfer into LSM blocked differentiation, IGF-II and IGFBP-5 secretion and induced apoptosis. We, therefore, wished to assess whether IGFs could protect against the effects of TNF alpha. Neither inhibition of differentiation or induction of apoptosis was rescued by co-incubation with IGF-I or IGF-II. A lower dose of TNF alpha (1 ng/ml) while not inducing apoptosis still inhibited myoblast differentiation by 56% +/- 12, (P < 0.001), indicating that induction of apoptosis is not the sole mechanism by which TNF alpha inhibits myoblast differentiation. Addition of IGF-I or IGF-II alone reduced differentiation by 49% +/- 15 and 33% +/- 20, respectively, (P < 0.001), although neither induced apoptosis. For muscle cells to differentiate, they must arrest in G0. We established that addition of IGF-I, IGF-II or TNF alpha to the myoblasts promoted proliferation. The myoblasts could not exit the cell cycle as efficiently as controls and differentiation was thus reduced. Unexpectedly, co-incubation of IGF-I or IGF-II with 1 ng/ml TNF alpha enhanced the inhibition of differentiation and induced apoptosis. In the absence of apoptosis we show an association between IGF-induced inhibition of differentiation and increased IGFBP-5 secretion. These results indicate that the effects of the IGFs on muscle may depend on the cytokine environment. In the absence of TNF alpha, the IGFs delay differentiation and promote myoblast proliferation whereas in the presence of TNF alpha the IGFs induce apoptosis.  相似文献   

9.
Muscle is an important target tissue for insulin-like growth factor (IGF) action. We have previously reported that muscle cell differentiation is associated with down-regulation of the IGF-I receptor at the level of gene expression that is concomitant with an increase in the expression and secretion of IGF-II. Furthermore, treatment of myoblasts with IGF-II resulted in a similar decrease in IGF-I receptor mRNA abundance, suggesting an autocrine role of IGF-II in IGF-I receptor regulation. To explore further the role of IGF-II in IGF-I receptor regulation, BC3H-1 mouse muscle cells were exposed to differentiation medium in the presence of basic fibroblast growth factor (FGF), a known inhibitor of myogenic differentiation. FGF treatment of cells resulted in a 50% inhibition of IGF-II gene expression compared to that in control myoblasts and markedly inhibited IGF-II secretion. Concomitantly, FGF resulted in a 60-70% increase in IGF-I binding compared to that in control myoblasts. Scatchard analyses and studies of gene expression demonstrated that the increased IGF-I binding induced by FGF reflected parallel increases in IGF-I receptor content and mRNA abundance. These studies indicate that FGF may up-regulate IGF-I receptor expression in muscle cells through inhibition of IGF-II peptide expression and further support the concept of an autocrine role of IGF-II in IGF-I receptor regulation. In addition, these studies suggest that one mechanism by which FGF inhibits muscle cell differentiation is through inhibition of IGF-II expression.  相似文献   

10.
Protein synthesis in rat L6 myoblasts is stimulated and protein breakdown inhibited in a co-ordinate manner by insulin-like growth factors (IGF) or insulin. For both processes, bovine IGF-1 was somewhat more potent than human IGF-1, which was effective at a tenth the concentration of insulin, rat IGF-2 or human IGF-2. A similar order of potency is noted when DNA synthesis or protein accumulation is monitored over a 24 h period, but between 20- and 50-fold higher concentrations of each growth factor are required than those needed to produce effects in the 4 h protein-synthesis or -breakdown measurements. Binding experiments with labelled human or bovine IGF-1 as ligand demonstrated competition at concentrations of IGF-2, especially human IGF-2, lower than that of either IGF-1 preparation. This pattern was much more pronounced when the radioligand was either human IGF-2 or rat IGF-2. Insulin competed 10-15% for the binding of labelled IGF-1, but not at all with labelled IGF-2. Ligand-receptor cross-linking experiments showed that labelled bovine IGF-1 bound approximately equally to the type 1 IGF receptor (Mr 130000 after reduction) and to the type 2 IGF receptor (Mr 270000 after reduction), and that unlabelled IGF-1 competed equally with radioligand binding to both receptors. On the other hand, rat IGF-2 competed more effectively for binding to the type-2 receptor, and insulin competed only for binding to the type-1 receptor. Further cross-linking experiments with rat IGF-2 as radioligand demonstrated binding only to the type-2 receptor and to proteins with Mr values after reduction of 230000 and 200000. This binding was prevented by high rat IGF-2 concentrations, less effectively by bovine IGF-1 and not at all by insulin. The apparently conflicting biological potencies and receptor binding of the different growth factors can be explained if all the biological actions are mediated via the type-1 IGF receptor, rather than through the abundant type-2 receptor.  相似文献   

11.
We reported that RAGE (receptor for advanced glycation end products), a multiligand receptor of the immunoglobulin superfamily expressed in myoblasts, when activated by its ligand amphoterin (HMGB1), stimulates rat L6 myoblast differentiation via a Cdc42-Rac-MKK6-p38 mitogen-activated protein kinase pathway, and that RAGE expression in skeletal muscle tissue is developmentally regulated. We show here that inhibition of RAGE function via overexpression of a signaling deficient RAGE mutant (RAGE delta cyto) results in increased myoblast proliferation, migration, and invasiveness, and decreased apoptosis and adhesiveness, whereas myoblasts overexpressing RAGE behave the opposite, compared with mock-transfected myoblasts. These effects are accompanied by a decreased induction of the proliferation inhibitor, p21(Waf1), and increased induction of cyclin D1 and extent of Rb, ERK1/2, and JNK phosphorylation in L6/RAGE delta cyto myoblasts, the opposite occurring in L6/RAGE myoblasts. Neutralization of culture medium amphoterin negates effects of RAGE activation, suggesting that amphoterin is the RAGE ligand involved in RAGE-dependent effects in myoblasts. Finally, mice injected with L6/RAGE delta cyto myoblasts develop tumors as opposed to mice injected with L6/RAGE or L6/mock myoblasts that do not. Thus, the amphoterin/RAGE pair stimulates myoblast differentiation by the combined effect of stimulation of differentiation and inhibition of proliferation, and deregulation of RAGE expression in myoblasts might contribute to their neoplastic transformation.  相似文献   

12.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The insulin-like growth factor (IGF) system is actively involved in the control of proliferation and differentiation of several myogenic cell lines, and phenotypic differences between myoblasts are associated with modifications of the equilibrium of the components of the IGF system. To determine whether this observation is a physiologic feature that also concerns the phenotypes of ex vivo adult satellite myoblasts in primary cell culture, we investigated the IGF system in rabbit slow-twitch muscle-derived satellite myoblasts (SSM), which differ phenotypically from fast-twitch muscle-derived satellite myoblasts (FSM) by their proliferation and differentiation kinetics in vitro. The expression of IGF-I and IGF-II were similar in SSM and FSM as well as their concentrations measured in cell-conditioned media. Ligand blotting of conditioned media samples indicated the presence of five IGF binding protein (IGFBP) species of Mr 37–40, 32, 30–31, 28, and 24 kDa. The 30–31 kDa doublet was visible in SSM-conditioned medium only and associated with the presence of a 22-kDa protein, which may represent a proteolytic fragment. In contrast, the 32-kDa band was observed in FSM-conditioned medium only. The other IGFBP moieties were present in both SSM- and FSM-conditioned media. Cross-linking experiments revealed the presence of the M6P/IGF-II receptor on both SSM and FSM membranes. We also observed an IGF-I receptor form bearing unusual high affinity for IGF-II: the binding of [125I]IGF-I on this receptor was preferentially displaced by IGF-I but that of [125I]IGF-II was mostly inhibited by IGF-II, suggesting that the two tracers did not bind on the same epitopes. [125I]IGF-II binding to this receptor was greater on SSM than on FSM membranes. Autophosphorylation of WGA-purified receptors revealed an ∼400-kDa band after SDS-PAGE under nonreducing conditions, which corresponded to the α2β2 form of the IGF-I receptor, and two β subunit moieties of Mr 101 and 105 kDa under reducing conditions in both SSM and FSM extracts. Phosphorylation of the 105-kDa moiety was more intensively increased than that of the 101-kDa protein after growth factor stimulation. Basal phosphorylation state of the two β subunits was similarly stimulated by IGF-I and IGF-II and less by insulin. Since both insulin and IGF-I receptors were expressed in FSM and SSM, one of the two β subunits may actually correspond to that of the insulin receptor. We conclude that the IGF system is not considerably affected by the phenotypes of SSM and FSM. The differences observed, which mostly concern IGFBP species, more likely appear as regulatory adaptations than as phenotypic changes targeting the components of the IGF system. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Evidence has accumulated that suggests that insulin-like growth factors (IGFs) exert a positive influence on myoblast differentiation. We have undertaken to study the signalling events required for differentiation resulting from type-1 IGF receptor stimulation in C2 myoblasts, where autocrine production of IGF-II was abolished by means of antisense RNA. Exposure of the cells to IGFs leads to a rapid and sustained activation of phosphatidyl-inositol 3-kinase followed by the expression of Myod, myogenin and differentiation. The fungal metabolite, wortmannin, inhibits both PI 3-kinase and muscle differentiation with an IC 50 in the nanomolar range. IGFs are also known to cause a rapid activation of MAP kinase. However, the synthetic inhibitor of MEK, PD098059, which prevents MAP kinase activation, does not affect myoblast differentiation. These results provide evidence that PI3-kinase, but not MAP kinase, is required for insulin-like growth factor receptor-dependent differentiation of muscle cells.  相似文献   

15.
Transforming growth factor betas (TGF-b?s) are the defining members of a superfamily of small proteins that are involved in the regulation of development and morphogenesis in a wide array of systems. Previous studies have demonstrated that TGF-b?s both inhibit and, under specialized conditions, induce the differentiation of myoblasts. TGF-b?s have been shown to be secreted by mouse C2C12 myoblast cultures undergoing differentiation. Insulin-like growth factors (IGFs) have also been shown to be secreted by myoblasts and to induce myogenesis. This study characterizes the effects of IGF treatment on the expression and secretion of TGF-b?s in the IGF-sensitive L6A1 myoblast line. IGF downregulated the expression of TGF-b?3 in a concentration-dependent manner at 24 and 48 hours; TGF-b?1 was not sensitive to IGF treatment at 24 hours but was downregulated by IGFs at 48 hours. This downregulation was mediated by the type I IGF receptor and modulated by IGF binding proteins secreted by the myoblasts. Some reexpression of TGF-b?1 and TGF-b?3 mRNAs was observed after extensive morphological differentiation had occurred. These results support the hypothesis that IGFs act through the IGF type I receptor as part of a concerted mechanism to modulate expression of the TGF-b? genes, as part of a coordinated set of changes associated with terminal myogenic differentiation. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The insulin-like growth factors (IGF-I and IGF-II), working through the type 1 IGF receptor (IGF-1R), are key mediators of skeletal muscle fiber growth and hypertrophy. These processes are largely dependent on stimulation of proliferation and differentiation of muscle precursor cells, termed myoblasts. It has not been rigorously determined whether the IGFs can also mediate skeletal muscle hypertrophy in a myoblast-independent fashion. Similarly, although the phosphatidylinositol 3-kinase (PI3K) and calcineurin signaling pathways have been implicated in skeletal muscle hypertrophy, these pathways are also involved in skeletal myoblast differentiation. To determine whether the IGFs can stimulate skeletal muscle hypertrophy in a myoblast-independent fashion, we developed and validated a retroviral expression vector that mediated overexpression of the human IGF-1R in rat L6 skeletal myotubes (immature muscle fibers), but not in myoblasts. L6 myotubes transduced with this vector accumulated significantly higher amounts of myofibrillar proteins, in a ligand- and receptor-dependent manner, than controls and demonstrated significantly increased rates of protein synthesis. Stimulation of myotube hypertrophy was independent of myoblast contributions, inasmuch as these cultures did not exhibit increased levels of myoblast proliferation or differentiation. Experiments with PI3K and calcineurin inhibitors indicated that myoblast-independent myotube hypertrophy was mediated by PI3K, but not calcineurin, signaling. This study demonstrates that IGF can mediate skeletal muscle hypertrophy in a myoblast-independent fashion and suggests that muscle-specific overexpression of the IGF-1R or stimulation of its signaling pathways could be used to develop strategies to ameliorate muscle wasting without stimulating proliferative pathways leading to carcinogenesis or other pathological sequelae.  相似文献   

17.
In addition to their ability to stimulate cell proliferation, polypeptide growth factors are able to maintain cell survival under conditions that otherwise lead to apoptotic death. Growth factors control cell viability through regulation of critical intracellular signal transduction pathways. We previously characterized C2 muscle cell lines that lacked endogenous expression of insulin-like growth factor II (IGF-II). These cells did not differentiate but underwent apoptotic death in low-serum differentiation medium. Death could be prevented by IGF analogues that activated the IGF-I receptor or by unrelated growth factors such as platelet-derived growth factor BB (PDGF-BB). Here we analyze the signaling pathways involved in growth factor-mediated myoblast survival. PDGF treatment caused sustained activation of extracellular-regulated kinases 1 and 2 (ERK1 and -2), while IGF-I only transiently induced these enzymes. Transient transfection of a constitutively active Mek1, a specific upstream activator of ERKs, maintained myoblast viability in the absence of growth factors, while inhibition of Mek1 by the drug UO126 blocked PDGF-mediated but not IGF-stimulated survival. Although both growth factors activated phosphatidylinositol 3-kinase (PI3-kinase) to similar extents, only IGF-I treatment led to sustained stimulation of its downstream kinase, Akt. Transient transfection of a constitutively active PI3-kinase or an inducible Akt promoted myoblast viability in the absence of growth factors, while inhibition of PI3-kinase activity by the drug LY294002 selectively blocked IGF- but not PDGF-mediated muscle cell survival. In aggregate, these observations demonstrate that distinct growth factor-regulated signaling pathways independently control myoblast survival. Since IGF action also stimulates muscle differentiation, these results suggest a means to regulate myogenesis through selective manipulation of different signal transduction pathways.  相似文献   

18.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

19.
Actions of transforming growth factor-beta on muscle cells   总被引:2,自引:0,他引:2  
It has recently been reported by three laboratories that transforming growth factor-beta (TGF-beta) is a potent and reversible inhibitor of differentiation in myogenic cells. To improve our understanding of this inhibition, we investigated the effects of TGF-beta on several other processes in L6 myoblasts, with emphasis on actions of the insulin-like hormones (which stimulate myoblast differentiation). We found that TGF-beta had no effect on the binding of insulin-like growth factors (IGFs) to their receptors on the cell surface, and it had little or no effect on some actions of the IGFs. There was essentially no change in the suppression of proteolysis or the stimulation of cell proliferation by IGFs when TGF-beta was also added to the medium. However, there was an effect of TGF-beta on another process stimulated by the IGFs; TGF-beta was an equally active and more potent stimulator of amino acid uptake than was IGF-I, and the stimulation was additive beyond the maximal response attained with IGF-I, suggesting that the two act by different mechanisms. TGF-beta had significant effects on myoblast morphology, causing the formation of abundant stress fibers containing cytoplasmic (but not myofibrillar) actin. Addition of TGF-beta at various times after initiation of differentiation demonstrated that TGF-beta inhibits an early process in differentiation. Thus it appears that the interactions of TGF-beta and the IGFs in myoblasts are complex; in some instances the effects of IGFs are inhibited and in others they are mimicked or are unaffected. It is clear that TGF-beta does not act by simply interfering with IGF binding or blocking early steps in its action on myoblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号