首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Inverse sampling is considered to be a more appropriate sampling scheme than the usual binomial sampling scheme when subjects arrive sequentially, when the underlying response of interest is acute, and when maximum likelihood estimators of some epidemiologic indices are undefined. In this article, we study various statistics for testing non-unity rate ratios in case-control studies under inverse sampling. These include the Wald, unconditional score, likelihood ratio and conditional score statistics. Three methods (the asymptotic, conditional exact, and Mid-P methods) are adopted for P-value calculation. We evaluate the performance of different combinations of test statistics and P-value calculation methods in terms of their empirical sizes and powers via Monte Carlo simulation. In general, asymptotic score and conditional score tests are preferable for their actual type I error rates are well controlled around the pre-chosen nominal level, and their powers are comparatively the largest. The exact version of Wald test is recommended if one wants to control the actual type I error rate at or below the pre-chosen nominal level. If larger power is expected and fluctuation of sizes around the pre-chosen nominal level are allowed, then the Mid-P version of Wald test is a desirable alternative. We illustrate the methodologies with a real example from a heart disease study.  相似文献   

2.
Overdispersion is a common phenomenon in Poisson modeling, and the negative binomial (NB) model is frequently used to account for overdispersion. Testing approaches (Wald test, likelihood ratio test (LRT), and score test) for overdispersion in the Poisson regression versus the NB model are available. Because the generalized Poisson (GP) model is similar to the NB model, we consider the former as an alternate model for overdispersed count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes a score test for overdispersion based on the GP model and compares the power of the test with the LRT and Wald tests. A simulation study indicates the score test based on asymptotic standard Normal distribution is more appropriate in practical application for higher empirical power, however, it underestimates the nominal significance level, especially in small sample situations, and examples illustrate the results of comparing the candidate tests between the Poisson and GP models. A bootstrap test is also proposed to adjust the underestimation of nominal level in the score statistic when the sample size is small. The simulation study indicates the bootstrap test has significance level closer to nominal size and has uniformly greater power than the score test based on asymptotic standard Normal distribution. From a practical perspective, we suggest that, if the score test gives even a weak indication that the Poisson model is inappropriate, say at the 0.10 significance level, we advise the more accurate bootstrap procedure as a better test for comparing whether the GP model is more appropriate than Poisson model. Finally, the Vuong test is illustrated to choose between GP and NB2 models for the same dataset.  相似文献   

3.
Population-based case-control studies are a useful method to test for a genetic association between a trait and a marker. However, the analysis of the resulting data can be affected by population stratification or cryptic relatedness, which may inflate the variance of the usual statistics, resulting in a higher-than-nominal rate of false-positive results. One approach to preserving the nominal type I error is to apply genomic control, which adjusts the variance of the Cochran-Armitage trend test by calculating the statistic on data from null loci. This enables one to estimate any additional variance in the null distribution of statistics. When the underlying genetic model (e.g., recessive, additive, or dominant) is known, genomic control can be applied to the corresponding optimal trend tests. In practice, however, the mode of inheritance is unknown. The genotype-based chi (2) test for a general association between the trait and the marker does not depend on the underlying genetic model. Since this general association test has 2 degrees of freedom (df), the existing formulas for estimating the variance factor by use of genomic control are not directly applicable. By expressing the general association test in terms of two Cochran-Armitage trend tests, one can apply genomic control to each of the two trend tests separately, thereby adjusting the chi (2) statistic. The properties of this robust genomic control test with 2 df are examined by simulation. This genomic control-adjusted 2-df test has control of type I error and achieves reasonable power, relative to the optimal tests for each model.  相似文献   

4.
Binomial regression models are commonly applied to proportion data such as those relating to the mortality and infection rates of diseases. However, it is often the case that the responses may exhibit excessive zeros; in such cases a zero‐inflated binomial (ZIB) regression model can be applied instead. In practice, it is essential to test if there are excessive zeros in the outcome to help choose an appropriate model. The binomial models can yield biased inference if there are excessive zeros, while ZIB models may be unnecessarily complex and hard to interpret, and even face convergence issues, if there are no excessive zeros. In this paper, we develop a new test for testing zero inflation in binomial regression models by directly comparing the amount of observed zeros with what would be expected under the binomial regression model. A closed form of the test statistic, as well as the asymptotic properties of the test, is derived based on estimating equations. Our systematic simulation studies show that the new test performs very well in most cases, and outperforms the classical Wald, likelihood ratio, and score tests, especially in controlling type I errors. Two real data examples are also included for illustrative purpose.  相似文献   

5.
This article considers global tests of differences between paired vectors of binomial probabilities, based on data from two dependent multivariate binary samples. Difference is defined as either an inhomogeneity in the marginal distributions or asymmetry in the joint distribution. For detecting the first type of difference, we propose a multivariate extension of McNemar's test and show that it is a generalized score test under a generalized estimating equations (GEE) approach. Univariate features such as the relationship between the Wald and score tests and the dropout of pairs with the same response carry over to the multivariate case and the test does not depend on the working correlation assumption among the components of the multivariate response. For sparse or imbalanced data, such as occurs when the number of variables is large or the proportions are close to zero, the test is best implemented using a bootstrap, and if this is computationally too complex, a permutation distribution. We apply the test to safety data for a drug, in which two doses are evaluated by comparing multiple responses by the same subjects to each one of them.  相似文献   

6.
Astuti ET  Yanagawa T 《Biometrics》2002,58(2):398-402
Trend tests for monotone trend or umbrella trend (monotone upward changing to monotone downward or vise versa) in count data are proposed when the data exhibit extra-Poisson variability. The proposed tests, which are called the GS1 test and the GS2 test, are constructed by applying an orthonormal score vector to a generalized score test under an rth-order log-linear model. These tests are compared by simulation with the Cochran-Armitage test and the quasi-likelihood test of Piegorsch and Bailer (1997, Statistics for Environmental Biology and Toxicology). It is shown that the Cochran-Armitage test should not be used under the existence of extra-Poisson variability; that, for detecting monotone trend, the GS1 test is superior to the others; and that the GS2 test has high power to detect an umbrella response.  相似文献   

7.
This paper is to investigate the use of the quasi-likelihood, extended quasi-likelihood, and pseudo-likelihood approach to estimating and testing the mean parameters with respect to two variance models, M1: φ μθ(1+μphis;) and M2: φ μθ(1+τ). Simulation was conducted to compare the bias and standard deviation, and type I error of the Wald tests, based on the model-based and robust variance estimates, using the three semi-parametric approaches under four mixed Poisson models, two variance structures, and two sample sizes. All methods perform reasonably well in terms of bias. Type I error of the Wald test, based on either the model-based or robust estimate, tends to be larger than the nominal level when over-dispersion is moderate. The extended quasi-likelihood method with the variance model M1 performs more consistently in terms of the efficiency and controlling the type I error than with the model M2, and better than the pseudo-likelihood approach with either the M1 or M2 model. The model-based estimate seems to perform better than the robust estimate when the sample size is small.  相似文献   

8.
The use of score tests for inference on variance components   总被引:4,自引:0,他引:4  
Whenever inference for variance components is required, the choice between one-sided and two-sided tests is crucial. This choice is usually driven by whether or not negative variance components are permitted. For two-sided tests, classical inferential procedures can be followed, based on likelihood ratios, score statistics, or Wald statistics. For one-sided tests, however, one-sided test statistics need to be developed, and their null distribution derived. While this has received considerable attention in the context of the likelihood ratio test, there appears to be much confusion about the related problem for the score test. The aim of this paper is to illustrate that classical (two-sided) score test statistics, frequently advocated in practice, cannot be used in this context, but that well-chosen one-sided counterparts could be used instead. The relation with likelihood ratio tests will be established, and all results are illustrated in an analysis of continuous longitudinal data using linear mixed models.  相似文献   

9.
In many applications of generalized linear mixed models to multilevel data, it is of interest to test whether a random effects variance component is zero. It is well known that the usual asymptotic chi-square distribution of the likelihood ratio and score statistics under the null does not necessarily hold. In this note we propose a permutation test, based on randomly permuting the indices associated with a given level of the model, that has the correct Type I error rate under the null. Results from a simulation study suggest that it is more powerful than tests based on mixtures of chi-square distributions. The proposed test is illustrated using data on the familial aggregation of sleep disturbance.  相似文献   

10.
Simultaneous confidence intervals for comparing binomial parameters   总被引:1,自引:0,他引:1  
Agresti A  Bini M  Bertaccini B  Ryu E 《Biometrics》2008,64(4):1270-1275
SUMMARY: To compare proportions with several independent binomial samples, we recommend a method of constructing simultaneous confidence intervals that uses the studentized range distribution with a score statistic. It applies to a variety of measures, including the difference of proportions, odds ratio, and relative risk. For the odds ratio, a simulation study suggests that the method has coverage probability closer to the nominal value than ad hoc approaches such as the Bonferroni implementation of Wald or "exact" small-sample pairwise intervals. It performs well even for the problematic but practically common case in which the binomial parameters are relatively small. For the difference of proportions, the proposed method has performance comparable to a method proposed by Piegorsch (1991, Biometrics 47, 45-52).  相似文献   

11.
We compared by simulation the likelihood ratio, Wald, and score tests based on a mixture model similar to that proposed by Farewell (1982, Biometrics 38, 1041-1046), and a simple nonparametric test based on the plateau value of the product-limit estimate, for testing the difference in cured proportions between two groups. The parametric tests obtained their asymptotic properties even in small samples provided that one could assume equal failure rates in the two groups. Otherwise, good agreement with predictions required that essentially all potential failures had been observed. The comparative properties of the parametric tests depended on whether the population survival functions crossed, with the power of the Wald test as good as or better than the others in the common situation when the survival functions do not cross. However, its size was sometimes less than nominal. The score test was often not defined and is therefore of limited value. The product-limit test often performed as well as the parametric tests, and despite being biased in some circumstances, may be a useful alternative to these, especially in small samples when some potential failures have not been observed.  相似文献   

12.
Lin X  Carroll RJ 《Biometrics》1999,55(2):613-619
In the analysis of clustered data with covariates measured with error, a problem of common interest is to test for correlation within clusters and heterogeneity across clusters. We examined this problem in the framework of generalized linear mixed measurement error models. We propose using the simulation extrapolation (SIMEX) method to construct a score test for the null hypothesis that all variance components are zero. A key feature of this SIMEX score test is that no assumptions need to be made regarding the distributions of the random effects and the unobserved covariates. We illustrate this test by analyzing Framingham heart disease data and evaluate its performance by simulation. We also propose individual SIMEX score tests for testing the variance components separately. Both tests can be easily implemented using existing statistical software.  相似文献   

13.
Summary . In this article, we consider problems with correlated data that can be summarized in a 2 × 2 table with structural zero in one of the off‐diagonal cells. Data of this kind sometimes appear in infectious disease studies and two‐step procedure studies. Lui (1998, Biometrics 54, 706–711) considered confidence interval estimation of rate ratio based on Fieller‐type, Wald‐type, and logarithmic transformation statistics. We reexamine the same problem under the context of confidence interval construction on false‐negative rate ratio in diagnostic performance when combining two diagnostic tests. We propose a score statistic for testing the null hypothesis of nonunity false‐negative rate ratio. Score test–based confidence interval construction for false‐negative rate ratio will also be discussed. Simulation studies are conducted to compare the performance of the new derived score test statistic and existing statistics for small to moderate sample sizes. In terms of confidence interval construction, our asymptotic score test–based confidence interval estimator possesses significantly shorter expected width with coverage probability being close to the anticipated confidence level. In terms of hypothesis testing, our asymptotic score test procedure has actual type I error rate close to the pre‐assigned nominal level. We illustrate our methodologies with real examples from a clinical laboratory study and a cancer study.  相似文献   

14.
We consider the problem of testing for heterogeneity of K proportions when K is not small and the binomial sample sizes may not be large. We assume that the binomial proportions are normally distributed with variance σ2. The asymptotic relative efficiency (ARE) of the usual chi-square test is found relative to the likelihood-based tests for σ2=0. The chi-square test is found to have ARE = 1 when the binomial sample sizes are all equal and high relative efficiency for other cases. The efficiency is low only in cases where there is insufficient data to use the chi-square test.  相似文献   

15.
The accelerated failure time model is presented as an alternative to the proportional hazard model in the analysis of survival data. We investigate the effect of covariates omission in the case of applying a Weibull accelerated failure time model. In an uncensored setting, the asymptotic bias of the treatment effect is theoretically zero when important covariates are omitted; however, the asymptotic variance estimator of the treatment effect could be biased and then the size of the Wald test for the treatment effect is likely to exceed the nominal level. In some cases, the test size could be more than twice the nominal level. In a simulation study, in both censored and uncensored settings, Type I error for the test of the treatment effect was likely inflated when the prognostic covariates are omitted. This work remarks the careless use of the accelerated failure time model. We recommend the use of the robust sandwich variance estimator in order to avoid the inflation of the Type I error in the accelerated failure time model, although the robust variance is not commonly used in the survival data analyses.  相似文献   

16.
In dominant lethal studies the primary variables of interest are typically expressed as discrete counts or proportions (e.g., live implants, resorptions, percent pregnant). Simple statistical sampling models for discrete data such as binomial or Poisson generally do not fit this type of data because of extra-binomial or extra-Poisson departures from variability predicted under these simple models. Extra-variability in the fetal response may originate from parental contributions. These can lead to over- or under-dispersion seen as, e.g., extra-binomial variability in the proportion response. Utilizing a large control database, we investigated the relative impact of extra-variability from male or female contributions on the endpoints of interest. Male-related effects did not seem to contribute to overdispersion in our database; female-related effects were, however, evidenced. Various statistical methods were considered to test for significant treatment differences under these forms of sampling variability. Computer simulations were used to evaluate these methods and to determine which are most appropriate for practical use in the evaluation of dominant lethal data. Our results suggest that distribution-free statistical methods such as a nonparametric permutation test or rank-based tests for trend can be recommended for use.  相似文献   

17.
McNemar test is commonly used to test for the marginal homogeneity in 2 × 2 contingency tables. McNemar test is an asymptotic test based either on standard normal distribution or on the chi‐square distribution. When the total sample size is small, an exact version of McNemar test is available based on the binomial probabilities. The example in the paper came from a clinical study to investigate the effect of epidermal growth factor for children who had microvillus inclusion diseases. There were only six observations available. The test results differ between the exact test and the asymptotic test. It is a common belief that with this small sample size the exact test be used. However, we claim that McNemar test performs better than the exact test even when the sample size is small. In order to investigate the performances of McNemar test and the exact test, we identify the parameters that affect the test results and then perform sensitivity analysis. In addition, through Monte Carlo simulation studies we compare the empirical sizes and powers of these tests as well as other asymptotic tests such as Wald test and the likelihood ratio test.  相似文献   

18.
For nonnormal data we suggest a test of location based on a broader family of distributions than normality. Such a test will in a sense fall between the standard parametric and non parametric tests. We see that the Wald tests based on this family of distributions have some advantages over the score tests and that they perform well in comparison to standard parametric and nonparametric tests in a variety of situations. We also consider when and how to apply such tests in practice.  相似文献   

19.
In the statistical evaluation of data from a dose-response experiment, it is frequently of interest to test for dose-related trend: an increasing trend in response with increasing dose. The randomization trend test, a generalization of Fisher's exact test, has been recommended for animal tumorigenicity testing when the numbers of tumor occurrences are small. This paper examines the type I error of the randomization trend test, and the Cochran-Armitage and Mantel-Haenszel tests. Simulation results show that when the tumor incidence rates are less than 10%, the randomization test is conservative; the test becomes very conservative when the incidence rate is less than 5%. The Cochran-Armitage and Mantel-Haenszel tests are slightly anti-conservative (liberal) when the incidence rates are larger than 3%. Further, we propose a less conservatived method of calculating the p-value of the randomization trend test by excluding some permutations whose probabilities of occurrence are greater than the probability of the the observed outcome.  相似文献   

20.
The performance of diagnostic tests is often evaluated by estimating their sensitivity and specificity with respect to a traditionally accepted standard test regarded as a “gold standard” in making the diagnosis. Correlated samples of binary data arise in many fields of application. The fundamental unit for analysis is occasionally the site rather than the subject in site-specific studies. Statistical methods that take into account the within-subject corelation should be employed to estimate the sensitivity and the specificity of diagnostic tests since site-specific results within a subject can be highly correlated. I introduce several statistical methods for the estimation of the sensitivity and the specificity of sitespecific diagnostic tests. I apply these techniques to the data from a study involving an enzymatic diagnostic test to motivate and illustrate the estimation of the sensitivity and the specificity of periodontal diagnostic tests. I present results from a simulation study for the estimation of diagnostic sensitivity when the data are correlated within subjects. Through a simulation study, I compare the performance of the binomial estimator pCBE, the ratio estimator pCBE, the weighted estimator pCWE, the intracluster correlation estimator pCIC, and the generalized estimating equation (GEE) estimator PCGEE in terms of biases, observed variances, mean squared errors (MSE), relative efficiencies of their variances and 95 per cent coverage proportions. I recommend using PCBE when σ == 0. I recommend use of the weighted estimator PCWE when σ = 0.6. When σ == 0.2 or σ == 0.4, and the number of subjects is at least 30, PCGEE performs well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号