共查询到20条相似文献,搜索用时 0 毫秒
1.
The two-component sensing system controlling bacterial chemotaxis is one of the best studied in biology. Rhodobacter sphaeroides has a complex chemosensory pathway comprising two histidine protein kinases (CheAs) and eight downstream response regulators (six CheYs and two CheBs) rather than the single copies of each as in Escherichia coli. We used in vitro analysis of phosphotransfer to start to determine why R.sphaeroides has these multiple homologues. CheA(1) and CheA(2) contain all the key motifs identified in the histidine protein kinase family, except for conservative substitutions (F-L and F-I) within the F box of CheA(2), and both are capable of ATP-dependent autophosphorylation. While the K(m) values for ATP of CheA(1) and CheA(2) were similar to that of E.coli, the k(cat) value was three times lower, but similar to that measured for the related Sinorhizobium meliloti CheA. However, the two CheAs differed both in their ability to phosphorylate the various response regulators and the rates of phosphotransfer. CheA(2) phosphorylated all of the CheYs and both CheBs, whilst CheA(1) did not phosphorylate either CheB and phosphorylated only the response regulators encoded within its own genetic locus (CheY(1), CheY(2), and CheY(5)) and CheY(3). The dephosphorylation rates of the R.sphaeroides CheBs were much slower than the E.coli CheB. The dephosphorylation rate of CheY(6), encoded by the third chemosensory locus, was ten times faster than that of the E.coli CheY. However, the dephosphorylation rates of the remaining R.sphaeroides CheYs were comparable to that of E.coli CheY. 相似文献
2.
P. Gouet N. Chinardet M. Welch V. Guillet S. Cabantous C. Birck L. Mourey J.‐P. Samama 《Acta Crystallographica. Section D, Structural Biology》2001,57(1):44-51
New crystallographic structures of the response regulator CheY in association with CheA124–257, its binding domain in the kinase CheA, have been determined. In all crystal forms, the molecular interactions at the heterodimer interface are identical. Soaking experiments have been performed on the crystals using acetyl phosphate as phosphodonor to CheY. No phosphoryl group attached to Asp57 of CheY is visible from the electron density, but the response regulator in the CheY–CheA124–257 complex may have undergone a phosphorylation–dephosphorylation process. The distribution of water molecules and the geometry of the active site have changed and are now similar to those of isolated CheY. In a second soaking experiment, imido‐diphosphate, an inhibitor of the phosphorylation reaction, was used. This compound binds in the vicinity of the active site, close to the N‐terminal part of the first α‐helix. Together, these results suggest that the binding of CheY to CheA124–257 generates a geometry of the active site that favours phosphorylation and that imido‐diphosphate interferes with phosphorylation by precluding structural changes in this region. 相似文献
3.
Ashby MK 《Archaea (Vancouver, B.C.)》2006,2(1):11-30
The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events. 相似文献
4.
Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ(C)), an indispensable structural component of the functional CheZ protein. To understand how the CheZ(C) helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ(200-214)) at resolutions ranging from 2.0 A to 2.3A. These structures provide a detailed view of the CheZ(C) peptide interaction both in the presence and absence of the phosphoryl analog, BeF3-. Our studies reveal that two different modes of binding the CheZ(200-214) peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ(C) helix binds to a "meta-active" conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains. 相似文献
5.
Barak R Prasad K Shainskaya A Wolfe AJ Eisenbach M 《Journal of molecular biology》2004,342(2):383-401
Acetylation of CheY, the excitatory response regulator of bacterial chemotaxis, by the enzyme acetyl-CoA synthetase (Acs) is involved in Escherichia coli chemotaxis, but its function is obscure. Here, we overproduced Acs from E.coli, purified it in quantities sufficient for biochemical work, and characterized both the enzyme and the CheY acetylation reaction that it catalyzes. Such characterization is essential for revealing the function of CheY acetylation in chemotaxis. The enzyme exhibited characteristics typical of prokaryotic Acs enzymes, and it could use either acetate or AcCoA as an acetyl donor for CheY acetylation. The Acs-catalyzed acetylation of CheY was reversible, an essential property for a regulatory process, and cooperative (Hill coefficient approximately 3). By Western blotting with specific anti-acetyl-lysine antibody we demonstrated that Acs undergoes autoacetylation, that CheY is acetylated to a small extent when isolated, and that the extent is elevated following in vitro acetylation. Exposing the intact protein to matrix-assisted laser desorption ionization time-of-flight mass spectrometry and electro-spray mass spectrometry, we found that, in most cases, purified CheY is a mixture of species having zero to six acetyl groups per molecule, with non-acetylated CheY being the most abundant species. By proteolytic in-gel digestion of non-treated CheY followed by peptide fingerprinting, precursor ion scan, and tandem mass spectrometry, we found that the acetylation sites of CheY are clustered at the C terminus of the protein, with lysine residues 91, 92, 109, 119, 122 and 126 being the main acetylation sites. Following in vitro acetylation, the main change that seemed to occur was an incremental increase in the extent of acetylation of the same lysine residues. Thus, CheY is similar to many eukaryotic proteins involved in signaling, which undergo both phosphorylation and multiple acetylation, and in which the acetylation sites are restricted to a particular region. 相似文献
6.
U Alon L Camarena M G Surette B Aguera y Arcas Y Liu S Leibler J B Stock 《The EMBO journal》1998,17(15):4238-4248
Chemotaxis responses in Escherichia coli are mediated by the phosphorylated response-regulator protein P-CheY. Biochemical and genetic studies have established the mechanisms by which the various components of the chemotaxis system, the membrane receptors and Che proteins function to modulate levels of CheY phosphorylation. Detailed models have been formulated to explain chemotaxis sensing in quantitative terms; however, the models cannot be adequately tested without knowledge of the quantitative relationship between P-CheY and bacterial swimming behavior. A computerized image analysis system was developed to collect extensive statistics on freeswimming and individual tethered cells. P-CheY levels were systematically varied by controlled expression of CheY in an E.coli strain lacking the CheY phosphatase, CheZ, and the receptor demethylating enzyme CheB. Tumbling frequency was found to vary with P-CheY concentration in a weakly sigmoidal fashion (apparent Hill coefficient approximately 2.5). This indicates that the high sensitivity of the chemotaxis system is not derived from highly cooperative interactions between P-CheY and the flagellar motor, but rather depends on nonlinear effects within the chemotaxis signal transduction network. The complex relationship between single flagella rotation and free-swimming behavior was examined; our results indicate that there is an additional level of information processing associated with interactions between the individual flagella. An allosteric model of the motor switching process is proposed which gives a good fit to the observed switching induced by P-CheY. Thus the level of intracellular P-CheY can be estimated from behavior determinations: approximately 30% of the intracellular pool of CheY appears to be phosphorylated in fully adapted wild-type cells. 相似文献
7.
One of the processes by which CheY, the excitatory response regulator of chemotaxis in Escherichia coli, can be activated to generate clockwise flagellar rotation is by acetyl-CoA synthetase (Acs)-mediated acetylation. Deletion of Acs results in defective chemotaxis, indicating the involvement of Acs-mediated acetylation in chemotaxis. To investigate whether Acs is the sole acetylating agent of CheY, we purified the latter from a delta acs mutant. Mass spectrometry analysis revealed that this protein is partially acetylated in spite of the absence of Acs, suggesting that CheY can be post-translationally acetylated in vivo by additional means. Using [14C]AcCoA in the absence of Acs, we demonstrated that one of these means is autoacetylation, with AcCoA serving as an acetyl donor and with a rate similar to that of Acs-mediated acetylation. Biochemical characterization of autoacetylated CheY and mass spectrometry analysis of its tryptic digests revealed that its acetylated lysine residues are those found in CheY acetylated by Acs, but the acetylation-level distribution among the acetylation sites was different. Like CheY acetylated by Acs, autoacetylated CheY could be deacetylated by Acs. Also similarly to the case of Acs-mediated acetylation, the phosphodonors of CheY, CheA and acetyl phosphate, each inhibited the autoacetylation of CheY, whereas the phosphatase of CheY, CheZ, enhanced it. A reduced AcCoA level interfered with chemotaxis to repellents, suggesting that CheY autoacetylation may be involved in chemotaxis of E. coli. Interestingly, this interference was restricted to repellent addition and was not observed with attractant removal, thus endorsing our earlier suggestion that the signaling pathway triggered by repellent addition is not identical to that triggered by attractant removal. 相似文献
8.
双组分信号系统是普遍存在于原核和真核细胞中,在进化上较保守的信号转导系统,主要由组氨酸蛋白激酶和应答调控器组成。双组分信号系统在植物的生长和发育中起非常重要的作用。随着拟南芥基因组测序的完成和功能基因组的深入研究发现,在拟南芥基因组中有55种参与双组分信号系统磷酸传递的蛋白。本文应用生物信息学的基本手段,如序列比较、多个序列比对、系统进化树分析、跨膜区分析、二级结构预测等,对这些蛋白进行系统分类,结构分析,并对在信号转导中已知功能的蛋白进行归类总结,便于人们了解双组分信号系统的作用机制及其在植物中的功能。 相似文献
9.
CheY, a response regulator of the chemotaxis system in Escherichia coli, can be activated by either phosphorylation or acetylation to generate clockwise rotation of the flagellar motor. Both covalent modifications are involved in chemotaxis, but the function of the latter remains obscure. To understand why two different modifications apparently activate the same function of CheY, we studied the effect that each modification exerts on the other. The phosphodonors of CheY, the histidine kinase CheA and acetyl phosphate, each strongly inhibited both the autoacetylation of the acetylating enzyme, acetyl-CoA synthetase (Acs), and the acetylation of CheY. CheZ, the enzyme that enhances CheY dephosphorylation, had the opposite effect and enhanced Acs autoacetylation and CheY acetylation. These effects of the phosphodonors and CheZ were not caused by their respective activities. Rather, they were caused by their interactions with Acs and, possibly, with CheY. In addition, the presence of Acs elevated the phosphorylation levels of both CheA and CheY, and acetate repressed this stimulation. These observations suggest that CheY phosphorylation and acetylation are linked and co-regulated. We propose that the physiological role of these mutual effects is at two levels: linking chemotaxis to the metabolic state of the cell, and serving as a tuning mechanism that compensates for cell-to-cell variations in the concentrations of CheA and CheZ. 相似文献
10.
《Bioscience, biotechnology, and biochemistry》2013,77(7):1566-1571
Aspergillus nidulans has many histidine-to-aspartate (His-Asp) phosphorelay components, including 15 histidine kinases (HKs), four response regulators (RRs), and a histidine-containing phosphotransfer intermediate (HPt). Of these, NikA (HK) is highly conserved in many filamentous fungi. It has been found that NikA is responsible for the responses of filamentous fungi to fungicides such as iprodione and fludioxonil. Two RRs, SskA and SrrA, are also involved in the fungicide response, providing a typical example of the His-Asp phosphorelay system, in which NikA functions as a sensor upstream of SskA and SrrA in response to fungicides. To gain further insight into the physiological roles of the NikA-SskA/SrrA phosphorelay system, we constructed a pair of ΔnikAΔsskA and ΔnikAΔsrrA double mutants. Here we provide evidence regarding the crucial involvement of the NikA-SskA/SrrA phosphorelay system in both osmotic adaptation and asexual development, including conidia formation. Based on these results, a general insight into the A. nidulans His-Asp phosphorelay network is also discussed. 相似文献
11.
非受体酪氨酸激酶c-Abl在正常生理及病理条件下具有多种生物学功能。当电离辐射、顺铂、丝裂霉素C等DNA损伤诱导剂诱导DNA损伤反应后,c-Abl可参与DNA损伤反应后的细胞周期调控、基因重组修复及细胞凋亡调控等,进而决定细胞在DNA损伤反应条件下的状态。简要介绍了c-Abl在DNA损伤反应中的作用及其进展。 相似文献
12.
Oshri Afanzar Diana Di Paolo Miriam Eisenstein Kohava Levi Anne Plochowietz Achillefs N Kapanidis Richard Michael Berry Michael Eisenbach 《The EMBO journal》2021,40(6)
Regulatory switches are wide spread in many biological systems. Uniquely among them, the switch of the bacterial flagellar motor is not an on/off switch but rather controls the motor’s direction of rotation in response to binding of the signaling protein CheY. Despite its extensive study, the molecular mechanism underlying this switch has remained largely unclear. Here, we resolved the functions of each of the three CheY‐binding sites at the switch in E. coli, as well as their different dependencies on phosphorylation and acetylation of CheY. Based on this, we propose that CheY motor switching activity is potentiated upon binding to the first site. Binding of potentiated CheY to the second site produces unstable switching and at the same time enables CheY binding to the third site, an event that stabilizes the switched state. Thereby, this mechanism exemplifies a unique combination of tight motor regulation with inherent switching flexibility. 相似文献
13.
Spatial organization of signalling is not an exclusive property of eukaryotic cells. Despite the fact that bacterial signalling pathways are generally simpler than those in eukaryotes, there are several well‐documented examples of higher‐order intracellular signalling structures in bacteria. One of the most prominent and best‐characterized structures is formed by proteins that control bacterial chemotaxis. Signals in chemotaxis are processed by ordered arrays, or clusters, of receptors and associated proteins, which amplify and integrate chemotactic stimuli in a highly cooperative manner. Receptor clusters further serve to scaffold protein interactions, enhancing the efficiency and specificity of the pathway reactions and preventing the formation of signalling gradients through the cell body. Moreover, clustering can also ensure spatial separation of multiple chemotaxis systems in one bacterium. Assembly of receptor clusters appears to be a stochastic process, but bacteria evolved mechanisms to ensure optimal cluster distribution along the cell body for partitioning to daughter cells at division. 相似文献
14.
组氨酸激酶参与的信号转导途径在细菌响应逆境过程中发挥了重要作用。经过60多年的研究,人们在多种细菌中发现了组氨酸激酶。细菌组氨酸激酶分为11个家族,每个家族涵盖多个类型。它们通过一步磷酸化或多步级联磷酸化的调节方式完成信号转导过程,调控多种逆境响应相关的基因表达,由此形成复杂而多样的信号感知系统。这使得细菌能够有效地响应温度变化、适应抗生素压力、产生毒力、顺应酸性环境和抵抗有机化合物胁迫等过程。通过综述组氨酸激酶的作用和机制,为理解细菌的生存策略和适应性提供见解,有助于拓展组氨酸激酶在生物学、医学和小分子检测等领域的应用研究。 相似文献
15.
16.
17.
Two-component and phosphorelay signal transduction systems are central components in the virulence and antimicrobial resistance responses of a number of bacterial and fungal pathogens; in some cases, these systems are essential for bacterial growth and viability. Herein, we analyze in detail the conserved surface residue clusters in the phosphotransferase domain of histidine kinases and the regulatory domain of response regulators by using complex structure-based three-dimensional cluster analysis. We also investigate the protein-protein interactions that these residue clusters participate in. The Spo0B-Spo0F complex structure was used as the reference structure, and the multiple aligned sequences of phosphotransferases and response regulators were paired correspondingly. The results show that a contiguous conserved residue cluster is formed around the active site, which crosses the interface of histidine kinases and response regulators. The conserved residue clusters of phosphotransferase and the regulatory domains are directly involved in the functional implementation of two-component signal transduction systems and are good targets for the development of novel antimicrobial agents. 相似文献
18.
Requirement of ATP in bacterial chemotaxis 总被引:13,自引:0,他引:13
J I Shioi R J Galloway M Niwano R E Chinnock B L Taylor 《The Journal of biological chemistry》1982,257(14):7969-7975
Evidence is presented that chemotaxis requires ATP or a closely related metabolite, in addition to its known requirements of ATP for synthesis of S-adenosylmethionine (AdoMet) and maintenance of the proton motive force. Previous studies demonstrated a loss of tumbling and chemotaxis, and depletion of ATP when hisF auxotrophs of Salmonella typhimurium are starved for histidine (Galloway, R. J., and Taylor, B. L. (1980) J. Bacteriol. 144, 1068-1075). In the present study, intracellular [AdoMet], membrane potential, and [ATP] were measured in a hisF mutant of S. typhimurium. Membrane potential, determined from partitioning of [3H]tetraphenylphosphonium ion between the inside and the outside of the cell, was about -150 mV at pH 7.6, and did not decrease in histidine starvation but was slightly increased. The concentration of AdoMet decreased from 0.4 mM to 0.3 mM during starvation but when cycloleucine, an inhibitor of AdoMet synthetase, was used to decrease [AdoMet] by a similar amount in histidine-fed cells there was little change in tumbling frequency. Intracellular [ATP] was reduced from 4.5 mM to less than 0.2 mM by histidine starvation. About 0.2 mM ATP was necessary for spontaneous tumbling. A similar [ATP] was required for tumbling in arsenate-treated cells. Adenine at concentrations as low as 20 nM caused a transient increase in both tumbling frequency and [ATP] in histidine-starved cells. Thus, out of three parameters tested, only the intracellular [ATP] correlated with changes in tumbling frequency in the histidine-starved cells. 相似文献
19.
In Escherichia coli chemotaxis, the switch from counterclockwise to clockwise rotation of the flagella occurs as a result of binding of the phosphorylated CheY protein to the base of the flagellum. Analysis of CheY variants has provided a picture of the surface of CheY that undergoes conformational shifts, as a result of phosphorylation, to interact directly with the flagellum. Whether phospho-CheY binding and flagellar switching are sequential steps or can occur in a concerted fashion has yet to be determined. 相似文献
20.