首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of apoptosis by Bcl-2 family proteins   总被引:9,自引:0,他引:9  
For multicellular organisms, the rigorous control of programmed cell death is as important as that of cell proliferation. The mechanisms involved in the regulation of cell death are not yet understood, but a key component is the family of caspases which are activated in a cascade and are responsible for the apoptotic-specific changes and disassembly of the cell. Although the caspases represent a central point in apoptosis, their activation is regulated by a variety of other factors. Among these, Bcl-2 family plays a pivotal role in caspases activation, by this deciding whether a cell will live or die. Bcl-2 family members are known to focus much of their response to the mitochondria level, upstream the irreversible cellular damage, but their functions are not yet well defined. This review summarizes the recent data regarding the Bcl-2 proteins and the ways they regulate the apoptosis.  相似文献   

2.
Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways   总被引:16,自引:0,他引:16  
Two main intracellular apoptosis cascades, the receptor and the mitochondria pathway, have been identified. The mitochondrial pathway is controlled by the Bcl-2 proteins. This protein family contains members with either pro- or anti-apoptotic activity. When activated the pro-apoptotic multidomain proteins permeabilized the outer mitochondrial membrane, resulting in the release of proteins from the intermembrane space. Several proteins, including cytochrome c, Smac/DIABLO, HtrA2/Omi, endonuclease G and AIF, normally sequestered in the mitochondria induce or promote apoptosis once released into the cytosol. Although, apoptosis is an essential physiological process in multicellular organisms it is also involved in a wide range of pathological conditions.  相似文献   

3.
How the Bcl-2 family of proteins interact to regulate apoptosis   总被引:24,自引:0,他引:24  
Commitment of cells to apoptosis is governed largely by protein-protein interactions between members of the Bcl-2 protein family. Its three sub-families have distinct roles: the BH3-only proteins trigger apoptosis by binding via their BH3 domain to pro-survival relatives, while the pro-apoptotic Bax and Bak have an essential downstream role involving disruption of organellar membranes and induction of caspase activation. The BH3-only proteins act as damage sensors, held inert until their activation by stress signals. Once activated, they were thought to bind promiscuously to pro-survival protein targets but unexpected selectivity has recently emerged from analysis of their interactions. Some BH3-only proteins also bind to Bax and Bak. Whether Bax and Bak are activated directly by these BH3-only proteins, or indirectly as a consequence of BH3-only proteins neutralizing their pro-survival targets is the subject of intense debate. Regardless of this, a detailed understanding of the interactions between family members, which are often selective, has notable implications for designing anti-cancer drugs to target the Bcl-2 family.  相似文献   

4.
5.
6.
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.  相似文献   

7.
During endochondral ossification, chondrocytes undergo hypertrophic differentiation and die by apoptosis. The level of inorganic phosphate (P(i)) elevates at the site of cartilage mineralization, and when chondrocytes were treated with P(i), they underwent rapid apoptosis. Gene silencing of the proapoptotic Bcl-2 homology 3-only molecule bnip3 significantly suppressed P(i)-induced apoptosis. Conversely, overexpression of Bcl-xL suppressed, and its knockdown promoted, the apoptosis of chondrocytes. Bnip3 was associated with Bcl-xL in chondrocytes stimulated with P(i). Bcl-xL was expressed uniformly in the growth plate chondrocytes, whereas Bnip3 expression was exclusively localized in the hypertrophic chondrocytes. Finally, we generated chondrocyte-specific bcl-x knock-out mice using the Cre-loxP recombination system, and we provided evidence that the hypertrophic chondrocyte layer was shortened in those mice because of an increased apoptosis of prehypertrophic and hypertrophic chondrocytes, with the mice afflicted with dwarfism as a result. These results suggest the pivotal role of Bcl-2 family members in the regulation of chondrocyte apoptosis.  相似文献   

8.
Neuzil J  Wang XF  Dong LF  Low P  Ralph SJ 《FEBS letters》2006,580(22):5125-5129
Mitochondria have emerged recently as effective targets for novel anti-cancer drugs referred to as 'mitocans'. We propose that the molecular mechanism of induction of apoptosis by mitocans, as exemplified by the drug alpha-tocopheryl succinate, involves generation of reactive oxygen species (ROS). ROS then mediate the formation of disufide bridges between cytosolic Bax monomers, resulting in the formation of mitochondrial outer membrane channels. ROS also cause oxidation of cardiolipin, triggering the release of cytochrome c and its translocation via the activated Bax channels. This model may provide a general mechanism for the action of inducers of apoptosis and anticancer drugs, mitocans, targeting mitochondria via ROS production.  相似文献   

9.
10.
Bcl-2 family proteins as ion-channels   总被引:16,自引:0,他引:16  
The Bcl-2 protein family function(s) as important regulators of cellular decisions to heed or ignore death signals. The three-dimensional structure of the Bcl-2 homolog, Bcl-XL, bears a strong resemblance to some pore-forming bacterial toxins. This similarity suggested that the Bcl-2 family proteins may also possess channel-forming capability. This review summarizes the recent initial studies on the in vitro channel activity of Bcl-2, Bcl-XL and Bax and offers some speculation as to the physiological role that these channels may play in the cell death pathway.  相似文献   

11.
UVB irradiation induced phosphorylation of JNK and subsequent apoptosis in human melanocytes. Depletion of both JNK1 and JNK2 expression using siRNA transfection, protected against apoptosis, as detected by decreased nuclear fragmentation and caspase-3 activity, as well as reduced translocation of Bax to mitochondria. Moreover, release of cathepsin B and D from lysosomes to the cytosol was reduced when JNK expression was suppressed by siRNA, demonstrating a JNK dependent regulation of lysosomal membrane permeabilization. In unirradiated control melanocytes, coimmunoprecipitation showed that Bim was sequestered by Mcl-1, which had a pro-survival function. After UVB irradiation, a significant decrease in Mcl-1 protein level was found, which was prevented by addition of a proteasome inhibitor. The interaction between Bim and Mcl-1 was reduced in response to UVB irradiation and Bim was phosphorylated in a JNK dependent manner. In conclusion, these findings suggest JNK to have an important pro-apoptotic function following UVB irradiation in human melanocytes, by acting upstream of lysosomal membrane permeabilization and Bim phosphorylation.  相似文献   

12.
Survival factors activate kinases which, in turn, phosphorylate the proapoptotic Bcl-xl/Bcl-2-associated death promoter homolog (BAD) protein at key serine residues. Phosphorylated BAD interacts with 14-3-3 proteins, and overexpression of 14-3-3 attenuates BAD-mediated apoptosis. Although BAD is known to interact with Bcl-2, Bcl-w, and Bcl-xL, the exact relationship between BAD and anti- or proapoptotic Bcl-2 proteins has not been analyzed systematically. Using the yeast two-hybrid protein interaction assay, we found that BAD interacted negligibly with proapoptotic Bcl-2 proteins. Even though wild type BAD only interacted with selected numbers of antiapoptotic proteins, underphosphorylated mutant BAD interacted with all antiapoptotic Bcl-2 proteins tested (Bcl-2, Bcl-w, Bcl-xL, Bfl-1/A1, Mcl-1, Ced-9, and BHRF-1). Using nonphosphorylated recombinant BAD expressed in bacteria, direct interactions between BAD and diverse antiapoptotic Bcl-2 members were also observed. Furthermore, apoptosis induced by BAD was blocked by coexpression with Bcl-2, Bcl-w, and Bfl-1. Comparison of BAD orthologs from zebrafish to human indicated the conservation of a 14-3-3 binding site and the BH3 domain during evolution. Thus, highly conserved BAD interacts with diverse antiapoptotic Bcl-2 members to regulate apoptosis.  相似文献   

13.
14.
Emerging roles of caspase-3 in apoptosis   总被引:1,自引:0,他引:1  
Caspases are crucial mediators of programmed cell death (apoptosis). Among them, caspase-3 is a frequently activated death protease, catalyzing the specific cleavage of many key cellular proteins. However, the specific requirements of this (or any other) caspase in apoptosis have remained largely unknown until now. Pathways to caspase-3 activation have been identified that are either dependent on or independent of mitochondrial cytochrome c release and caspase-9 function. Caspase-3 is essential for normal brain development and is important or essential in other apoptotic scenarios in a remarkable tissue-, cell type- or death stimulus-specific manner. Caspase-3 is also required for some typical hallmarks of apoptosis, and is indispensable for apoptotic chromatin condensation and DNA fragmentation in all cell types examined. Thus, caspase-3 is essential for certain processes associated with the dismantling of the cell and the formation of apoptotic bodies, but it may also function before or at the stage when commitment to loss of cell viability is made.  相似文献   

15.
A tumor suppressor gene product, ARF, sensitizes cells to apoptosis in the presence of appropriate collateral signals. In this study, we analyzed the mechanism of ARF-dependent apoptosis and demonstrated that ARF induces mitochondria-dependent apoptosis in p53 wild-type, ARF/p16-null cells. We also found that ARF evokes cytochrome c release from mitochondria, decreases mitochondrial membrane potential, and activates pro-caspase-9 to induce apoptosis. Our findings suggest that this apoptotic cellular modulation is brought about by up-regulation of the proapoptotic Bcl-2 family proteins Bax and Bim and down-regulation of antiapoptotic Bcl-2 in mitochondrial fractions. Additionally, ARF seems to down-regulate Bcl-2 in a p53-dependent manner while up-regulating Bax/Bim via a p53-independent pathway.  相似文献   

16.
Structural biology of the Bcl-2 family of proteins   总被引:29,自引:0,他引:29  
The proteins of the Bcl-2 family are important regulators of programmed cell death. Structural studies of Bcl-2 family members have provided many important insights into their molecular mechanism of action and how members of this family interact with one another. To date, structural studies have been performed on six Bcl-2 family members encompassing both anti- (Bcl-x(L), Bcl-2, KSHV-Bcl-2, Bcl-w) and pro-apoptotic (Bax, Bid) members. They all show a remarkably similar fold despite an overall divergence in amino acid sequence and function (pro-apoptotic versus anti-apoptotic). The three-dimensional structures of Bcl-2 family members consist of two central, predominantly hydrophobic alpha-helices surrounded by six or seven amphipathic alpha-helices of varying lengths. A long, unstructured loop is present between the first two alpha-helices. The structures of the Bcl-2 proteins show a striking similarity to the overall fold of the pore-forming domains of bacterial toxins. This finding led to experiments which demonstrated that Bcl-x(L), Bcl-2, and Bax all form pores in artificial membranes. A prominent hydrophobic groove is present on the surface of the anti-apoptotic proteins. This groove is the binding site for peptides that mimic the BH3 region of various pro-apoptotic proteins such as Bak and Bad. Structures of Bcl-x(L) in complex with these BH3 peptides showed that they bind as an amphipathic alpha-helix and make extensive hydrophobic contacts with the protein. These data have not only helped to elucidate the interactions important for hetero-dimerization of Bcl-2 family members but have also been used to guide the discovery of small molecules that block Bcl-x(L) and Bcl-2 function. In the recently determined structure of the anti-apoptotic Bcl-w protein, the protein was also found to have a hydrophobic groove on its surface capable of binding BH3-containing proteins and peptides. However, in the native protein an additional carboxy-terminal alpha-helix interacts with the hydrophobic groove. This is reminiscent of how the carboxy-terminal alpha-helix of the pro-apoptotic protein Bax binds into its hydrophobic groove. This interaction may play a regulatory role and for Bax may explain why it is found predominately in the cytoplasm prior to activation. The hydrophobic groove of the pro-apoptotic protein, Bid protein, is neither as long nor as deep as that found in Bcl-x(L), Bcl-2, or Bax. In addition, Bid contains an extra alpha-helix, which is located between alpha1 and alpha2 with respect to Bcl-x(L), Bcl-2, and Bax. Although there are still many unanswered questions regarding the exact mechanism by which the Bcl-2 family of proteins modulates apoptosis, structural studies of these proteins have deepened our understanding of apoptosis on the molecular level.  相似文献   

17.
The Bcl-2 family of proteins consists of anti-apoptotic and pro-apoptotic members, which determine the life or death of cells by altering mitochondrial membrane permeability. Pro-apoptotic Bcl-2 family members increase mitochondrial membrane permeability, resulting in the release of mitochondrial apoptogenic factors such as cytochrome c that activates death proteases called caspases, whereas anti-apoptotic family members prevent this increase of mitochondrial membrane permeability. The release of cytochrome c is central to apoptotic signal transduction in mammals, and has been studied extensively, leading to the development of several models for cytochrome c release including rupture of the mitochondrial outer membrane and involvement of specific channels. This article describes the important role of a mitochondrial outer membrane channel, the voltage-dependent anion channel (VDAC), in apoptogenic cytochrome c release and its regulation by Bcl-2 family members, and also discusses the molecular architecture of the life - death switch in mammalian cells. Cell Death and Differentiation (2000) 7, 1174 - 1181  相似文献   

18.
This study investigated the effects of sinusoidal ELF-MF (1 mT; 50 Hz) on the apoptosis induced by four different compounds, namely vinblastine, etoposide, quercetin, and resveratrol, in human K562 chronic myeloid leukemia cells. The exposure to ELF-MF did not affect growth and viability of untreated K562 cells and did not influence the anti-proliferative effects of resveratrol, vinblastine, and etoposide. On the contrary, in quercetin-treated cells, exposure to ELF-MF significantly reduced the percentage of apoptotic cells and the caspase-3 activity and modified the cell cycle profile especially after 48 h of exposure. In addition, the simultaneous treatments for 24 h with quercetin plus ELF-MF increased Bcl-2 protein expression and prevented quercetin-induced downregulation of Mcl-1 and Bcl-xL. Finally, an increase of HSP70 expression was also observed after prolonged ELF-MF treatment. The ELF-MF-dependent modulation of the expression of anti-apoptotic Bcl-2 family and Hsp70 proteins could act as a pro-survival mechanism in K562 cells.  相似文献   

19.
Bcl-2-family proteins and the role of mitochondria in apoptosis   总被引:31,自引:0,他引:31  
Mitochondria are central to many forms of cell death, usually via the release of pro-apoptotic proteins from the mitochondrial intermembrane space. Some intermembrane space proteins, including cytochrome c, Smac/DIABLO, and Omi/Htra2, can induce or enhance caspase activation, whereas others, such as AIF and endonuclease G, might act in a caspase-independent manner. Intermembrane space protein release is often regulated by Bcl-2-family proteins. Recent evidence suggests that pro-apoptotic members of this family, by themselves, can permeabilize the outer mitochondrial membrane without otherwise damaging mitochondria. Mitochondria can contribute to cell death in other ways. For example, they can respond to calcium release from the endoplasmic reticulum by undergoing the mitochondrial permeability transition, which in turn causes outer membrane rupture and the release of intermembrane space proteins. Bcl-2-family proteins can influence the levels of releasable Ca(2+) in the endoplasmic reticulum, and thus determine whether the released Ca(2+) is sufficient to overload mitochondria and induce cell death.  相似文献   

20.
Apoptosis in response to developmental cues and stress stimuli is mediated by caspases that are regulated by the Bcl-2 protein family. Although caspases 2 and 9 have each been proposed as the apical caspase in that pathway, neither is indispensable for the apoptosis of leukocytes or fibroblasts. To investigate whether these caspases share a redundant role in apoptosis initiation, we generated caspase-2(-/-)9(-/-) mice. Their overt phenotype, embryonic brain malformation and perinatal lethality mirrored that of caspase-9(-/-) mice but were not exacerbated. Analysis of adult mice reconstituted with caspase-2(-/-)9(-/-) hematopoietic cells revealed that the absence of both caspases did not influence hematopoietic development. Furthermore, lymphocytes and fibroblasts lacking both remained sensitive to diverse apoptotic stimuli. Dying caspase-2(-/-)9(-/-) lymphocytes displayed multiple hallmarks of caspase-dependent apoptosis, including the release of cytochrome c from mitochondria, and their demise was antagonized by several caspase inhibitors. These findings suggest that caspases other than caspases 2 and 9 can promote cytochrome c release and initiate Bcl-2-regulated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号