首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serial oral glucose tolerance tests in rats treated with streptozotocin and nicotinamide showed that blood glucose levels after glucose loading were suppressed significantly 7 months after treatment as compared to those of earlier stages. Post-glucose plasma insulin levels were significantly elevated at the 9th to 12th month and concomitantly fasting plasma glucagon levels rose significantly. At that time pancreatic islet cell tumors were demonstrated in all of the rats in this experiment. Post-glucose plasma glucagon levels, however, did not show remarkable changes throughout the observation. In spite of hyperinsulinemia, post-glucose plasma glucagon levels of tumor-bearing rats were significantly lower than those of body weight adjusted controls. It is inferred from the study that secretory activity of pancreatic A-cells of tumor-bearing rats is restrained by excess insulin released from islet cell tumors.  相似文献   

2.
The effects of administration of glucose orally and tolbutamide or arginine intravenously on insulin and glucagon secretion and blood glucose level were studied in normal and thiamine-deficient rats. In thiamine deficiency, insulin secretion and glucose tolerance were impaired during glucose ingestion. Tolbutamide decreased the blood glucose level in both control and thiamine-deficient rats but its stimulatory effect on insulin secretion was minimal in thiamine-deficient rats unlike the control animals. Arginine did not alter substantially the blood glucose or insulin in thiamine-deficient rats, whereas it increased the insulin level in control rats. The fasting plasma glucagon level was high in thiamine deficiency. Tolbutamide increased the plasma glucagon in control rats, but did so only marginally in thiamine-deficient rats. Arginine also increased the glucagon secretion throughout the period of study in control rats. In thiamine-deficient rats the glucagon secretion was pronounced only after 20 min of arginine administration. These results suggest that an unimpaired glucose metabolism is a prerequisite to induce proper insulin secretion. Only proper insulin secretion can check the glucagon secretion rather than the increased glucose level. Hypoglycemia can induce glucagon secretion independent of the insulin level.  相似文献   

3.
Background: We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon‐like peptide‐1 (GLP‐1). Objective: Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP‐1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures: Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA‐cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP‐1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results: Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP‐1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP‐1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion: Overall, combining HP with HF in the diet increased GLP‐1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet‐induced vs. genetic obesity with overt hyperleptinemia.  相似文献   

4.
Fructose feeding induces moderate increases in blood pressure levels in normal rats, which is associated with hyperinsulinemia, insulin resistance, and impaired glucose tolerance. Increased vascular resistance, sodium retention, and sympathetic overactivity have been proposed to contribute to the blood pressure elevation in this model. Taurine, a sulphur-containing amino acid, has been reported to have antihypertensive and sympatholytic actions. In the present study, the effects of taurine on blood pressure, plasma levels of glucose and insulin, glucose tolerance, and renal function were studied in fructose-fed rats. Fructose-fed rats had higher blood pressure and elevated plasma levels of insulin and glucose. The plasma glucose levels were higher in fructose-fed rats than in controls at 15, 30, and 60 min after the oral glucose load. Treatment with 2% taurine in drinking water prevented the blood pressure elevation and attenuated the hyperinsulinemia in fructose-fed rats. The exaggerated glucose levels in response to the oral glucose load was also prevented by taurine administration. Thus, taurine supplementation could be beneficial in circumventing metabolic alterations in insulin resistance.  相似文献   

5.
Serum glucose and serum insulin levels were measured during oral glucose tolerance tests in 100 women, 20-39 years of age, who used the OC (oral contraceptive) preparation Stediril and in a control group of 96 women of the same age group. Significantly lower fasting serum glucose levels were observed after 6 months of OC use. Significant decreases in glucose tolerance were observed among OC users who had taken OCs for longer than 6 months. The blood glucose levels were elevated significantly in this group 60 and 120 minutes after the beginning of the test. No correlation could be found between age and changes in glucose tolerance. No significant differences in fasting serum insulin levels were found in either group. A significant increase in serum insulin levels was observed among women who had used OCs longer than 6 months; this increase was apparent only 120 minutes after the beginning of the test. These changes in glucose tolerance were found to be reversible. Glucose tolerance tests should be preformed once a year on OC users, more often if an abnormality in glucose metabolism, e.g. latent diabetes, is present.  相似文献   

6.
Master athletes who exercise regularly appear to avoid the development of insulin resistance and deterioration of glucose tolerance (GT) commonly seen with aging. To evaluate the possibility that exercise prevents rather than masks the aging-related changes responsible for development of insulin resistance, we investigated the effects of 10 days of physical inactivity in 14 master athletes aged 61 +/- 2 (SE) yr. The response of 10 of these men to inactivity was similar to that of young athletes, with an unchanged plasma glucose response and a significantly greater insulin response to an oral glucose tolerance test (OGTT) after 10 days of inactivity. These 10 athletes appeared to have been protected against the aging-related changes in GT because their plasma glucose and insulin levels during the OGTT after 10 days of inactivity were not significantly different from those of young lean sedentary men. In contrast, a deterioration in GT occurred in four of the master athletes during 10 days of inactivity; this was sufficiently marked in two of them to be classified as impaired GT. We conclude that regular exercise may 1) protect against the development of insulin resistance and decline in GT with aging in individuals with normal GT and 2) normalize GT by means of short-term effects of exercise in some individuals with abnormal GT.  相似文献   

7.
The action of glucagon in the liver is mediated by G-coupled receptors. To examine the role of glucagon in glucose homeostasis, we have generated mice in which the glucagon receptor was inactivated (GR(-/-) mice). Blood glucose levels were somewhat reduced in GR(-/-) mice relative to wild type, in both the fed and fasted state. Plasma insulin levels were not significantly affected. There was no significant effect on fasting plasma cholesterol or triglyceride levels associated with deletion of the glucagon receptor. Glucose tolerance, as assessed by an oral glucose tolerance test, improved. Plasma glucagon levels were strikingly elevated in both fed and fasted animals. Despite a total absence of glucagon receptors, these animals maintained near-normal glycemia and normal lipidemia, in the presence of circulating glucagon concentrations that were elevated by two orders of magnitude.  相似文献   

8.
Plasma glucagon, adrenaline, noradrenaline, insulin and glucose concentrations were measured in 7 healthy young males during hyperthermia in a sauna bath: plasma glucagon levels increased from baseline values of 127.0 +/- 12.9 (SEM) pg X ml-1 to a maximum of 173.6 +/- 16.1 (SEM) pg X ml-1 at the 20th min of exposure. No change in plasma insulin and a slight increase in plasma glucose concentration were seen. Since a concomitant moderate increase in plasma catecholamine levels was also present, the adrenergic stimulus is believed to trigger glucagon release during hyperthermia. Diminished visceral blood flow, known to occur in sauna baths, may cause a decrease in the degradation of plasma glucagon and thus contribute to the elevated plasma glucagon levels.  相似文献   

9.
We previously reported that treatment of streptozotocin-induced diabetic rats with zinc plus cyclo (his-pro) (CHP) decreased fed blood glucose levels and water intake. The present study was conducted to examine the dose-dependent, acute, and chronic treatment effects of CHP on oral glucose tolerance (OGT), fed blood glucose levels, water intake, and plasma insulin levels in young and aged Sprague-Dawley (S-D) rats, nondiabetic Wistar rats, and genetically diabetic Goto-Kakizaki (G-K) rats. Acute gastric gavage of 10 mg zinc plus 1.0 mg CHP/kg body weight significantly improved OGT in 4- and 13-month-old nondiabetic S-D rats and in 2-month-old diabetic G-K rats. Young S-D and G-K rats returned to pretreatment OGT values 1 week after acute gavage of zinc plus CHP (ZC), but improved OGT values persisted for at least 1 week after gavage in aged S-D rats. OGT values and fed blood glucose decreased to the greatest extent among other treatments when G-K rats were given free access to drinking water containing 1.0 to 1.5 mg CHP/L plus 10 mg zinc/L for 2 weeks. Although food and water intake showed a tendency to decrease, no statistically significant differences were observed in young G-K rats. Plasma insulin levels and blood glucose levels in both normal and diabetic G-K rats decreased with 2-week treatment with ZC. To test the direct effects of ZC on muscle tissue, we observed the effect of various doses of ZC on normal and G-K rat muscle slices. The optimal level of CHP alone for maximal muscle glucose uptake in muscle slices from normal rats was 10 microg/mL and 5.0 microg/mL in G-K rats, and ZC stimulated glucose uptake. However, no statistically significant difference was demonstrated between normal and G-K rat tissues in this study. These results indicate that oral intake of an optimal dose of ZC stimulates blood glucose metabolism, probably by stimulating muscle glucose utilization.  相似文献   

10.
A previous study in our laboratory showed that streptozotocin (STZ) induced diabetic, deoxycorticosterone acetate (DOCA) induced hypertensive rats exhibited significantly lower levels of plasma glucose than did normotensive diabetic animals. The present experiments further investigate the effects of DOCA treatment on fasting levels of plasma glucose and insulin and on their changes after oral glucose challenge in nondiabetic and STZ-diabetic rats. It was found that, in nondiabetic rats, DOCA-induced hypertension was associated with normal glucose levels and glucose tolerance but with significantly lower levels of plasma insulin. DOCA-treated diabetic animals showed significantly lower levels of plasma glucose, but their plasma insulin concentrations were not significantly different from those of the DOCA vehicle treated diabetic rats. DOCA-treated diabetic rats also had significantly higher plasma levels of cholesterol and triglycerides. It is suggested that DOCA may have a direct or indirect action on the assimilation, production, or utilization of glucose, perhaps leading to an improvement in insulin sensitivity and subsequently a decrease in insulin secretion.  相似文献   

11.
Two experiments were conducted to examine the effect of zinc deficiency on glucose tolerance, and on blood and pancreatic insulin concentrations. In the first study, no significant differences in blood glucose or plasma insulin levels were noted between pair-weighted zinc deficient and zinc sufficient rats after an oral glucose load. In the second experiment, the concentration of pancreatic insulin in pair-fed zinc sufficient rats did not differ significantly from that of zinc deficient rats. However, a zinc deficient group fed ad libitum had significantly lower pancreatic insulin levels, suggesting that food restriction may cause increased pancreatic insulin. Thus, zinc deficiency per se had no apparent effect on oral glucose tolerance or pancreatic insulin concentrations.  相似文献   

12.
Yuan Q  Chen L  Liu C  Xu K  Mao X  Liu C 《PloS one》2011,6(10):e25167
Epidemiological studies have linked intrauterine growth retardation (IUGR) to the metabolic diseases, consisting of insulin resistance, type 2 diabetes, obesity and coronary artery disease, during adult life. To determine the internal relationship between IUGR and islet β cell function and insulin sensitivity, we established the IUGR model by maternal nutrition restriction during mid- to late-gestation. Glucose tolerance test and insulin tolerance test (ITT) in vivo and glucose stimulated insulin secretion (GSIS) test in vitro were performed at different stages in IUGR and normal groups. Body weight, pancreas weight and pancreas/body weight of IUGR rats were much lower than those in normal group before 3 weeks of age. While the growth of IUGR rats accelerated after 3 weeks, pancreas weight and pancreas/body weight remained lower till 15 weeks of age. In the newborns, the fasting glucose and insulin levels of IUGR rats were both lower than those of controls, whereas glucose levels at 120 and 180 min after glucose load were significantly higher in IUGR group. Between 3 and 15 weeks of age, both the fasting glucose and insulin levels were elevated and the glucose tolerance was impaired with time in IUGR rats. At age 15 weeks, the area under curve of insulin (AUCi) after glucose load in IUGR rats elevated markedly. Meanwhile, the stimulating index of islets in IUGR group during GSIS test at age 15 weeks was significantly lower than that of controls. ITT showed no significant difference in two groups before 7 weeks of age. However, in 15-week-old IUGR rats, there was a markedly blunted glycemic response to insulin load compared with normal group. These findings demonstrate that IUGR rats had both impaired pancreatic development and deteriorated glucose tolerance and insulin sensitivity, which would be the internal causes why they were prone to develop type 2 diabetes.  相似文献   

13.
In an attempt to know the role of the pineal gland on glucose homeostasis, the blood plasma concentrations of glucose, insulin and glucagon under basal conditions or after the administration of nutrients were studied in the jugular vein of conscious pinealectomized (Pn), melatonin-treated pinealectomized (Pn + Mel) and control (C) rats. Glucose levels were smaller in C than in Pn rats, while immunoreactive insulin (IRI) concentrations were significantly greater in C than in Pn rats. Contrary to this, immunoreactive glucagon (IRG) levels were significantly greater in Pn than in C animals. Melatonin treatment of Pn rats induces an increase of IRI concentrations and a reduction in IRG levels. Similar changes were obtained when hormonal determinations were carried out in portal blood plasma. Although ether anesthesia increases circulating glucagon levels in the porta and cava veins, the qualitative changes of plasma insulin and glucagon in Pn and Pn + Mel were similar to those found in conscious rats. To determine the effects of nutrients on pancreatic hormone release, intravenous arginine or oral glucose were administered to the animals of the three experimental groups. In C rats, both glucose and IRI levels reached a peak 30 minutes after glucose ingestion, decreasing thereafter. However, in Pn rats a glucose intolerance was observed, with maximum glucose and insulin concentrations at 60 minutes, while in Pn + Mel animals, glucose and IRI concentrations were in between the data obtained with the other two groups. Furthermore, glucose ingestion induced a significant reduction of IRG levels in all the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Normal and hypophysectomized (hypox) rats, fed ad libitum, received intraperitoneal injections of tolbutamide (75 mg/kg/day) or of saline for 6 weeks. 24 h after the last injection, blood samples were taken for glucose, insulin and glucagon determinations. In normal rats, tolbutamide treatment did not alter serum glucose, insulin and glucagon, although it suppressed the secretion of insulin and glucagon by the pancreatic islets. In hypox rats, tolbutamide decreased serum glucose and insulin, elevated serum glucagon and stimulated the secretion of glucagon, but not that of insulin by the pancreatic islets. In addition, tolbutamide treatment increased the glucagon response to arginine in normal, but not in hypox rats. The serum glucose response to arginine was decreased by tolbutamide treatment and by hypophysectomy and, thus, appeared independent of the glucagon rise or preexisting glucagon level. We conclude that tolbutamide treatment decreased the secretion of glucagon and insulin in normal rats and stimulated that of glucagon in hypox rats, perhaps because of the low levels of insulin in the serum and in the pancreas of the latter. Our results are compatible with the hypothesis that the pancreatic action of tolbutamide is influenced by the pituitary.  相似文献   

15.
Calcium channel blockers, verapamil or felodipine, were given to genetically obese 6 and 11-month-old female SHHF/Mcc-facp (SHHF: Spontaneous Hypertension Heart Failure) rats for 8 weeks to investigate their effects on glucose and lipid metabolism and obesity. Both antihypertensive agents significantly decreased systolic blood pressure. In 11-month-old rats, verapamil treatment significantly decreased body weight after 4 weeks whereas with felodipine it was only significantly reduced after 8 weeks. In 6-month-old rats, verapamil significantly curtailed body weight gain. Subcutaneous fat depots were smaller, and abdominal fat depots were larger in verapamil rats compared to felodipine or control rats. Oral glucose tolerance tests in the 6-month-old verapamil and the 11-month-old felodipine groups showed improved glucose tolerance compared to their respective control groups. After 8 weeks of treatment, fasting plasma glucose levels were lower in 6-month-old verapamil rats compared to felodipine and control rats and were decreased by both verapamil and felodipine treatments as compared to control in 11-month-old rats. During the oral glucose tolerance test in 6-month-old rats, both fasting plasma insulin and the area under the insulin curve were increased in verapamil compared to both control and felodipine groups. When compared to controls, plasma cholesterol was increased by verapamil in both age groups, but was significantly decreased by felodipine after 8 weeks of treatment in the 11-month-old group. Plasma triglycerides increased in all control rats compared to initial levels; however, verapamil and felodipine groups showed lower triglycerides in both age groups. In 6-month-old rats, the percentages of plasma HDL significantly increased in both treatment groups as compared to control. This study shows that verapamil and felodipine depressed body weight gain in the young rats, reduced body weight in the old rats, improved lipid parameters and glucose tolerance, but had the opposite effects on body fat distribution and insulin levels in obese female SHHF rats.  相似文献   

16.
T Karashima  A V Schally 《Peptides》1988,9(3):561-565
The action of the new analog of somatostatin, D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), on plasma glucagon and glucose levels was evaluated in streptozotocin-diabetic rats. The effect of this analog on the insulin-induced hypoglycemia in diabetic rats was also investigated in order to evaluate the risk of exacerbating hypoglycemia. Administration of analog RC-160, in a dose of 25 micrograms/kg b. wt. SC, inhibited plasma glucagon secretion and decreased plasma glucose levels. This effect also occurred when plasma glucagon and glucose levels were first elevated by arginine infusion, 1000 mg/kg/hr for 30 min. Subcutaneous injection of regular insulin, 15 U/kg b. wt., produced hypoglycemia with a progressive increase in glucagon levels. Analog RC-160 completely suppressed the hypoglycemia-induced glucagon release for up to 150 min after injection of the analog or insulin. A greater decrease in the plasma glucose level was observed in the group treated with insulin and the analog than in the group injected only with insulin. These results indicate that somatostatin analog RC-160 can produce a marked and prolonged inhibition of glucagon release and a decrease in the plasma glucose level in diabetic rats. This analog may be useful as an adjunct to insulin in the treatment of diabetic patients, although caution should be exercised, to prevent hypoglycemia when using somatostatin analogs together with insulin.  相似文献   

17.
Effects of age and glucose levels on insulin secretion and synthesis were studied in the perfused pancreas of young (2-month-old) and older (10-month-old) female Wistar rats. Insulin secretion induced by 16.7 mM glucose showed a triphasic pattern: an early spike and fall (first phase, 0-6 min), followed by a sustained gradual increase (second phase, 7-120 min) and a gradual decreased release thereafter (third phase, 121-360 min) during the perfusion period of 360 min. First and second phase insulin secretion, but not third phase, were lower in older rats than in young rats. Insulin synthesis in old rat pancreas perfused with 16.7 nM glucose for 360 min was much greater than that of young rats. Second phase insulin secretion was restored to comparable levels by 28 mM glucose in older rats. Repeated pulses of 28 mM glucose potentiated subsequent insulin secretion in young rats, but not in older rats. These findings provide further evidence that sensitivity to glucose in pancreatic B cells is altered by aging.  相似文献   

18.
Diurnal variation in oral glucose tolerance was studied in 122 male volunteers aged 40 yearsand over who participated in a screening health examination. In those with screening blood sugar levels exceeding 110 mg./100 ml. the degree of diurnal variation was least in those with the highest morning glycaemia; the latter also tended to have lower afternoon fasting bloodsugar levels.In a group of 40 control subjects, afternoon glucose tolerance tests yielded significantly higher post-glucose blood sugar levels. The degree of diurnal variation was significantly and inversely related to the degree of obesity.  相似文献   

19.
1. Body weight loss in 48 hr fasted rats decreased with age. 2. Blood glucose and plasma RIA-insulin levels correlated negatively and positively respectively with body weight in fed rats. Fasting produced a greater fall in blood glucose and a smaller decrease in RIA-insulin in young than in old rats. 3. Blood ketone bodies correlated negatively with body weight after 48 hr fasting. 4. In oral glucose tolerance tests, blood glucose rose more in adult and old rats than in prepuberals when both fed and fasted. RIA-insulin levels rose more in prepuberals than in older rats when fed but not when fasted. 5. Changes in body composition and reduced insulin sensitivity with age are discussed.  相似文献   

20.
Recent studies showing the therapeutic effect of young blood on aging‐associated deterioration of organs point to young blood as the solution for clinical problems related to old age. Given that defective autophagy has been implicated in aging and aging‐associated organ injuries, this study was designed to determine the effect of young blood on aging‐induced alterations in hepatic function and underlying mechanisms, with a focus on autophagy. Aged rats (22 months) were treated with pooled plasma (1 ml, intravenously) collected from young (3 months) or aged rats three times per week for 4 weeks, and 3‐methyladenine or wortmannin was used to inhibit young blood‐induced autophagy. Aging was associated with elevated levels of alanine transaminase and aspartate aminotransferase, lipofuscin accumulation, steatosis, fibrosis, and defective liver regeneration after partial hepatectomy, which were significantly attenuated by young plasma injections. Young plasma could also restore aging‐impaired autophagy activity. Inhibition of the young plasma‐restored autophagic activity abrogated the beneficial effect of young plasma against hepatic injury with aging. In vitro, young serum could protect old hepatocytes from senescence, and the antisenescence effect of young serum was abrogated by 3‐methyladenine, wortmannin, or small interfering RNA to autophagy‐related protein 7. Collectively, our data indicate that young plasma could ameliorate age‐dependent alterations in hepatic function partially via the restoration of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号