首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Photoinhibition was analyzed in O2-evolving and in Tris-treated PS II membrane fragments by measuring flash-induced absorption changes at 830 nm reflecting the transient P680+ formation and oxygen evolution. Irradiation by visible light affects the PS II electron transfer at two different sites: a) photoinhibition of site I eliminates the capability to perform a stable charge separation between P680+ and QA - within the reaction center (RC) and b) photoinhibition of site II blocks the electron transfer from YZ to P680+. The quantum yield of site I photoinhibition (2–3×10-7 inhibited RC/quantum) is independent of the functional integrity of the water oxidizing system. In contrast, the quantum yield of photoinhibition at site II depends strongly on the oxygen evolution capacity. In O2-evolving samples, the quantum yield of site II photoinhibition is about 10-7 inhibited RC/quantum. After selective elimination of the O2-evolving capacity by Tris-treatment, the quantum yield of photoinhibition at site II depends on the light intensity. At low intensity (<3 W/m2), the quantum yield is 10-4 inhibited RC/quantum (about 1000 times higher than in oxygen evolving samples). Based on these results it is inferred that the dominating deleterious effect of photoinhibition cannot be ascribed to an unique target site or a single mechanism because it depends on different experimental conditions (e.g., light intensity) and the functional status of the PS II complex.Abbreviations A830 absorption change at 830 nm - P680 primary electron donor of PS II - PS II photosystem II - Mes 2(N-morpholino)ethansulfonic acid - QA, QB primary and secondary acceptors of PS II - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbohydrazide - FWHM fullwidth at half maximum - Ph-p-BQ phenyl-p-benzoquinone - PFR photon fluence rate - Pheo pheophytin - RC reaction center  相似文献   

2.
Photoinhibition under aerobic and anaerobic conditions was analyzed in O2-evolving and in Tris-treated PS II-membrane fragments from spinach by measuring laser-flash-induced absorption changes at 826 nm reflecting the transient P680+ formation and the chlorophyll fluorescence lifetime. It was found that anaerobic photoinhibitory treatment leads in both types of samples to the appearence of two long-lived fluorescence components with lifetimes of 7 ns and 16 ns, respectively. The extent of these fluorescence kinetics depends on the state of the reaction center (open/closed) during the fluorescence measurements: it is drastically higher in the closed state. It is concluded that this long-lived fluorescence is mainly emitted from modified reaction centers with singly reduced QA(QA -). This suggests that the observation of long-lived fluorescence components cannot necessarily be taken as an indicator for reaction centers with missing or doubly reduced and protonated QA (QAH2). Time-resolved measurements of 826 nm absorption changes show that the rate of photoinhibition of the stable charge separation (P680*QA P680+QA -), is nearly the same in O2-evolving and in Tris-treated PS II-membrane fragments. This finding is difficult to understand within the framework of the QAH2-mechanism for photoinhibition of stable charge separation because in that case the rate of photoinhibition should strongly depend on the functional integrity of the donor side of PS II. Based on the results of this study it is inferred, that several processes contribute to photoinhibition within the PS II reaction center and that a mechanism which comprises double reduction and protonation of QA leading to QAH2 formation is only of marginal – if any – relevance for photoinhibition of PS II under both, aerobic and anaerobic, conditions.  相似文献   

3.
PS II membrane fragments produced from higher plant thylakoids by Triton X-100 treatment exhibit strong photoinhibition and concomitant fast degradation of the D1 protein. Involvement of (molecular) oxygen is necessary for degradation of the D1 protein.The herbicides atrazine and diuron, but not ioxynil, partly protect the D1 protein against degradation. Binding of atrazine to the D1 protein is necessary to protect the D1 polypeptide, as shown with PS II membrane fragments from an atrazine-resistant biotype of Chenopodium album which are protected by diuron not by atrazine.Abbreviations atrazine 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine - Chl chlorophyll, diuron - (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DCIP 2,6-dichlorophenol indophenol - DPC diphenylcarbazide - ioxynil 4-cyano-2,6-diiodophenol - kb binding constant - Mes 4-morpholinoethanesulfonic acid - P-680 reaction-center chlorophyll a of photosystem-II - PAGE polyacrylamide gel electrophoresis - PS II photosystem-II - QA and QB primary and secondary quinone electron acceptors - Z electron donor to the photosystem-II reaction center - SDS sodium dodecylsulfate - Tricine N-2-hydroxy-1,1-bis(hydroxymethyl)ethylglycine  相似文献   

4.
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100–300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680+ Phe-) and charge stabilization (formation of P-680+ QA -), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8–1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNB m-dinitrobenzene - PPBQ phenyl-p-benzoquinone - PS I photosystem I of green plants - PS II photosystem II of green plants - PSU photosynthetic unit - P-680 primary donor of PS II - Phe intermediary pheophytin acceptor of PS II - QA primary quinone acceptor of PS II - RC reaction center  相似文献   

5.
We have measured, under Cu (II) toxicity conditions, the oxygen-evolving capacity of spinach PS II particles in the Hill reactions H2OSiMo (in the presence and absence of DCMU) and H2OPPBQ, as well as the fluorescence induction curve of Tris-washed spinach PS II particles. Cu (II) inhibits both Hill reactions and, in the first case, the DCMU-insensitive H2O SiMo activity. In addition, the variable fluorescence is lowered by Cu (II). We have interpreted our results in terms of a donor side inhibition close to the reaction center. The same polarographic and fluorescence measurements carried out at different pHs indicate that Cu (II) could bind to amino acid residues that can be protonated and deprotonated. In order to reverse the Cu (II) inhibition by a posterior EDTA treatment, in experiments of preincubation of PS II particles with Cu (II) in light we have demonstrated that light is essential for the damage due to Cu (II) and that this furthermore is irreversible.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenilcarbazide - Fo initial non-variable fluorescence - FI intermediate fluorescence yield - Fm maximum fluorescence yield - Fv variable fluorescence yield - Mes 2,-(N-morpholino)ethanosulfonic acid - OEC oxygen-evolving complex - P680 Primary electron donor chlorophyll - Pheo pheophytin - PPBQ phenyl-p-benzo-quinone - PS II Photosystem II - SiMo Silicomolybdate - QB secondary quinone acceptor - QA primary quinone aceptor - Tris N-tris(hydroxymethyl)amino ethane - Tyrz electron carrier functioning between P680 and the Mn cluster This article is dedicated to Prof. Dr. Harmut Lichtenthaler on the occasion of his 60th birthday.  相似文献   

6.
The psbP gene product, the so called 23 kDa extrinsic protein, is involved in water oxidation carried out by Photosystem II. However, the protein is not absolutely required for water oxidation. Here we have studied Photosystem II mediated electron transfer in a mutant of Chlamydomonas reinhardtii, the FUD 39 mutant, that lacks the psbP protein. When grown in dim light the Photosystem II content in thylakoid membranes of FUD 39 is approximately similar to that in the wild-type. The oxygen evolution is dependent on the presence of chloride as a cofactor, which activates the water oxidation with a dissociation constant of about 4 mM. In the mutant, the oxygen evolution is very sensitive to photoinhibition when assayed at low chloride concentrations while chloride protects against photoinhibition with a dissociation constant of about 5 mM. The photoinhibition is irreversible as oxygen evolution cannot be restored by the addition of chloride to inhibited samples. In addition the inhibition seems to be targeted primarily to the Mn-cluster in Photosystem II as the electron transfer through the remaining part of Photosystem II is photoinhibited with slower kinetics. Thus, this mutant provides an experimental system in which effects of photoinhibition induced by lesions at the donor side of Photosystem II can be studied in vivo.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - DPC 2,2-diphenylcarbonic dihydrazide - HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - P680 the primary electron donor to PS II - PpBQ phenyl-p-benzoquinone - PS II Photosystem II - QA the first quinone acceptor of PS II - QB the second quinone acceptor of PS II - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - TyrD accessory electron donor on the D2-protein - TyrZ tyrosine residue, acting as electron carrier between P680 and the water oxidizing system  相似文献   

7.
The discovery of period four oscillations of the fluorescence yield under flashing light demonstrated that not only the redox state of the Photosystem II (PS II) electron acceptor QA, but also the oxygen evolving cycle (described by the S states) modulates the fluorescence yield of chlorophyll (Chl). The positive charges accumulated on the donor side of PS II act on the fluorescence yield (measured in the QA state during a strong flash) through the concentration of the quencher P680 +, the oxidized form of PS II reaction center Chl a. However, the period four oscillations of the fluorescence yield detected 1 s after a strong flash (in the P680QA state) have not yet been fully explained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The effect of desiccation and rehydration on the function of Photosystem II has been studied in the desiccation tolerant lichen Cladonia convoluta by thermoluminescence. We have shown that in functional fully hydrated thalli thermoluminescence signals can be observed from the recombination of the S2(3)QB (B band), S2QA (Q band), Tyr-D+QA (C band) and Tyr-Z+(His+)QA (A band) charge stabilization states. These thermoluminescence signals are completely absent in desiccated thalli, but rapidly reappear on rehydration. Flash-induced oscillation in the amplitude of the thermoluminescence band from the S2(3)QB recombination shows the usual pattern with maxima after 2 and 6 flashes when rehydration takes place in light. However, after rehydration in complete darkness, there is no thermoluminescence emission after the 1 st flash, and the maxima of the subsequent oscillation are shifted to the 3rd and 7th flashes. It is concluded that desiccation of Cladonia convoluta converts PS II into a nonfunctional state. This state is characterized by the lack of stable charge separation and recombination, as well as by a one-electron reduction of the water-oxidizing complex. Restoration of PS II function during rehydration can proceed both in the light and in darkness. After rehydration in the dark, the first charge separation act is utilized in restoring the usual oxidation state of the water-oxidizing comples.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DT desiccation tolerant - PS II Photosystem II - TL thermoluminescence - P680 reaction center Chl of PS II - QA and QB puinone electron acceptors of PS II - S0,...,S4 the redox states of the water-oxidizing complex - Tyr-Z and Tyr-D redox-active tyrosine electron donors of PS II  相似文献   

9.
Loss by recombination of the charge separated state P680+QA limits the performance of Photosystem II (PS II) as a photochemical energy converter. Time constants reported in literature for this process are mostly either near 0.17 ms or near 1.4 ms. The shorter time is found in plant PS II when reduction of P680+ by the secondary electron donor Tyrosine Z cannot occur because YZ is already oxidized. The 1.4 ms recombination is seen in YZ-less mutants of the cyanobacterium Synechocystis. However, the rate of P680+QA recombination that actually competes with the stabilization of the charge separation has not been previously reported. We have measured the kinetics of the flash-induced fluorescence yield changes in the microsecond time domain in Tris-washed spinach chloroplasts. In this way the kinetics and yield of P680+ reduction by YZ were obtained, and the rate of the competing P680+QA recombination could be evaluated. The recombination time was less than 0.5 ms; the best-fitting time constant was 0.1 ms. The presence of YZox slightly decreased the efficiency of excitation trapping but did not seem to accelerate P680+QA recombination. The two P680+QA lifetimes in the literature probably reflect a significant difference between plant and cyanobacterial PS II.  相似文献   

10.
The light-induced oxidation of the accessory donor tyrosine-D (YD) has been studied by measurements of the EPR Signal IIslow at room temperature in the autotrophically and photoheterotrophically cultivated alga Chlamydobotrys stellata. After illumination and dark adaptation, YD Signal IIslow was observed only in autotrophic algae, i.e. under conditions of a linear photosynthetic electron transfer from water to NADP+. The addition of artificial electron acceptors phenyl-p-benzoquinone (PPQ) or dichloro-p-benzoquinone (DCQ) to the autotrophic cells caused an almost negligible increase of this signal. When photosynthetic electron flow and oxygen evolution were diminished by removal of the carbon source CO2 and addition of acetate (photoheterotrophy), a pronounced YD Signal IIslow was seen only in presence of DCQ or PPQ. Several possibilities are discussed to explain the absence of YD Signal IIslow in photoheterotrophic Chl. stellata such as the existence of a cyclic PS II electron flow very effectively reducing P680 and thereby preventing the possibility of YD oxidation. Artificial electron acceptors withdraw electrons from this cycle thus keeping the primary quinone acceptor, QA, oxidized and thereby diminishing the reduction of P680 + by cyclic PSII. This leads to the appearance of the YD Signal IIslow also in the photoheterotrophically grown algae.Abbreviations A-band- thermoluminescence band associated with S2QA - charge recombination - DCQ- 2,5-dichlorobenzoquinone - D2- structure protein of Photosystem II - EPR- electron paramagnetic resonance - OEC- oxygen evolving complex - PPQ- phenyl-p-benzoquinone - PS II- Photosystem II - P680- reaction center of Photosystem II - Q-band- thermoluminescence band associated with S2QA - charge recombination - Si- oxidation levels of the OEC - YD- tyrosine-D accessory donor to P680 - YZ- tyrosine-Z electron donor to P680 Dedicated to Prof. Dr E. Schnepf/Heidelberg.  相似文献   

11.
Chlamydomonas reinhardtii mutants D1-R323H, D1-R323D, and D1-R323L showed elevated chlorophyll fluorescence yields, which increased with decline of oxygen evolving capacity. The extra step K ascribed to the disturbance of electron transport at the donor side of PS II was observed in OJIP kinetics measured in mutants with a PEA fluorometer. Fluorescence decay kinetics were recorded and analyzed in a pseudo-wild type (pWt) and in mutants of C. reinhardtii with a Becker and Hickl single photon counting system in pico- to nanosecond time range. The kinetics curves were fitted by three exponentials. The first one (rapid, with lifetime about 300 ps) reflects energy migration from antenna complex to the reaction center (RC) of photosystem II (PS II); the second component (600–700 ps) has been assigned to an electron transfer from P680 to QA, while the third one (slow, 3 ns) assumingly originates from charge recombination in the radical pair [P680+• Pheo−•] and/or from antenna complexes energetically disconnected from RC II. Mutants showed reduced contribution of the first component, whereas the yield of the second component increased due to slowing down of the electron transport to QA. The mutant D1-R323L with completely inactive oxygen evolving complex did not reveal rapid component at all, while its kinetics was approximated by two slow components with lifetimes of about 2 and 3 ns. These may be due to two reasons: a) disconnection between antennae complexes and RC II, and b) recombination in a radical pair [P680+• Pheo−•] under restricted electron transport to QA. The data obtained suggest that disturbance of oxygen evolving function in mutants may induce an upshift of the midpoint redox potential of QA/QA couple causing limitation of electron transport at the acceptor side of PS II.  相似文献   

12.
Photosystem II (PS II) is the site of oxygen evolution. Activation of dark adapted samples by a train of saturating flashes produces oxygen with a yield per flash which oscillates with a periodicity of four. Damping of the oxygen oscillations is accounted for by misses and double hits. The mechanisms hidden behind these parameters are not yet fully understood. The components which participate in charge transfer and storage in PS II are believed to be anchored to the heterodimer formed by the D1 and D2 proteins. The secondary plastoquinone acceptor QB binds on D1 in a loop connecting the fourth and fifth helices (the QB pocket). Several D1 mutants, mutated in the QB binding region, have been studied over the past ten years.In the present report, our results on nine D1 mutants of Synechocystis PCC 6714 and 6803 are analyzed. When oxygen evolution is modified, it can be due to a change in the electron transfer kinetics at the level of the acceptor side of PS II and also in some specific mutants to a long ranging effect on the donor side of PS II. The different properties of the mutants enable us to propose a classification in three categories. Our results can fit in a model in which misses are substantially determined by the fraction of centers which have QA - before each flash due to the reversibility of the electron transfer reactions. This idea is not new but was more thoroughly studied in a recent paper by Shinkarev and Wraight (1993). However, we will show in the discussion that some doubts remain as to the true origin of misses and double hits.Abbreviations BQ p-benzoquinone - Chl chlorophyll - D1 and D2 proteins of the core of PS II - DCMU 3-(3,4-dichlorophenyl)-1,1 dimethyl urea - OEC oxygen evolving complex - P680 chlorophyll center of PS II acting as the primary donor - PS II Photosystem II - QA and QB primary and secondary quinone electron acceptor - TL thermoluminescence  相似文献   

13.
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680+) and the reduced electron acceptor pheophytin a (Pheo a ) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a procedure which stabilizes the protein complex. Transient absorption difference spectra were measured from 450–840 nm as a function of time with 500fs resolution following 610 nm laser excitation. The formation of P680+-Pheo a is indicated by the appearance of a band due to P680+ at 820 nm and corresponding absorbance changes at 490, 515 and 546 nm due to the formation of Pheo a . The appearance of the 490 nm and 820 nm bands is monoexponenital with =1.4±0.2 ps. Treatment of the PS II RC with sodium dithionite and methyl viologen followed by exposure to laser excitation results in accumulation of Pheo a . Laser excitation of these prereduced RCs at 15 K results in formation of a transient absorption spectrum assigned to 1*P680. We observe wavelength-dependent kinetics for the recovery of the transient bleach of the Qy absorption bands of the pigments in both untreated and pre-reduced PS II RCs at 15K. This result is attributed to an energy transfer process within the PS II RC at low temperature that is not connected with charge separation.Abbreviations PS I Photosystem I - PS II Photosystem II - RC reaction center - P680 primary electron donor in Photosystem II - Chl a chlorophyll a - Pheo a pheophytin a  相似文献   

14.
Flash-induced absorbance measurements at 830 nm on both nanosecond and microsecond timescales have been used to characterise the effect of ultraviolet light on Photosystem II core particles. A combination of UV-A and UV-B, closely simulating the spectrum of sunlight below 350 nm, was found to have a primary effect on the donor side of P680. Repetitive measurements indicated reductions in the nanosecond components of the absorbance decay with a concomitant appearance and increase in the amplitude of a component with a 10 s time constant attributed to slow reduction of P680+ by Tyrz when the function of the oxygen evolving complex is inhibited. Single-flash measurements show that the nanosecond components have amplitudes which vary with S-state. Increasing UV irradiation inhibited the amplitude of these components without changing their S-state dependence. In addition, UV irradiation resulted in a reduction in the total amplitude, with no change in the proportion of the 10 s contribution.Abbreviations BBY- PS II membrane fragments - P680- primary electron donor of PS II - PS II- Photosystem II - QA and QB– primary and secondary quinone electron acceptors of PS II - S-state- redox state of the oxygenevolving complex - Tyrz– tyrosine residue in PS II - UV-A- ultraviolet radiation 320–400 nm - UV-B- ultraviolet radiation 280–320 nm  相似文献   

15.
After a complete removal of Mn from pea subchloroplast photosystem-II (PS II) preparations the electron phototransfer and oxygen evolution are restored upon addition of Mn2+ and Ca2+. Pre-illumination of the sample in the absence of Mn2+ leads to photoinhibition (PI) — irreversible loss of the capability of PS II to be reactivated by Mn2+. The effect of PI is considerably decreased in the presence of Mn2+ (4 Mn atoms per reaction center of PS II) and it is increased in the presence of ferricyanide or p-benzoquinone revealing the oxidative nature of the photoeffect. PI results in suppression of oxygen evolution, variable fluorescence, photoreduction of 2,6-dichlorophenol indophenol from either water or diphenylcarbazide. However, photooxidation of chlorophyll P680, the primary electron donor of PS II as well as dark and photoinduced EPR signal II (ascribed to secondary electron donors D 1 and Z) are preserved. PI is accompanied by photooxidation of 2–3 carotenoid molecules per PS II reaction center (RC) that is accelerated in the presence of ferricyanide and is inhibited upon addition of Mn2+ or diuron. The conclusion is made that PI in the absence of Mn leads to irreversible oxidative inactivation of electron transfer from water to RC of PS II which remains photochemically active. A loss of functional interaction of RC with the electron transport chain as a common feature for different types of PS II photoinhibition is discussed.Abbreviations A photoinduced absorbance changes - DPC diphenylcarbazide - DPIP 2,6-dichlorophenol indophenol - F o constant fluorescence of chlorophyll - F photoinduced changes of Chl fluorescence yield - Mn manganese - P680 the primary electron donor in PS II - PI photoinhibition - PS II photosystem II - Q the primary (quinone) electron acceptor in PS II - RC reaction center  相似文献   

16.
The kinetics of P680+ reduction in oxygen-evolving spinach Photosystem II (PS II) core particles were studied using both repetitive and single-flash 830 nm transient absorption. From measurements on samples in which PS II turnover is blocked, we estimate radical-pair lifetimes of 2 ns and 19 ns. Nanosecond single-flash measurements indicate decay times of 7 ns, 40 ns and 95 ns. Both the longer 40 ns and 95 ns components relate to the normal S-state controlled Yz P680+ electron transfer dynamics. Our analysis indicates the existence of a 7 ns component which provides evidence for an additional process associated with modified interactions involving the water-splitting catalytic site. Corresponding microsecond measurements show decay times of 4 s and 90 s with the possibility of a small component with a decay time of 20–40 s. The precise origin of the 4 s component remains uncertain but appears to be associated with the water-splitting center or its binding site while the 90 s component is assigned to P680+-QA recombination. An amplitude and kinetic analysis of the flash dependence data gives results that are consistent with the current model of the oxygen-evolving complex.Abbreviations PS II- Photosystem II- - P680- primary donor (Chl-aII dimer) of PS II - Yz- Tyr 161 donor to P680 - QA- quinone secondary acceptor to P680 - LHC- light-harvesting chlorophyll protein of PS II - BBY- Berthold, Babcock and Yocum PS II membrane fragment preparation - PPBQ- phenyl-p-benzoquinone  相似文献   

17.
In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these inactive PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA occurs approximately 1000 times more slowly than at active centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.Abbreviations A518 absorbance change at 518 nm, reflecting the formation of an electric field across the thylakoid membrane - AFL1 amplitude of the fast (<100 ms) phase of A518 induced by the first of two saturating, single-turnover flashes spaced 30 ms apart - AFL2 amplitude of the fast (<100 ms) phase of A518 induced by the second of two saturating, single-turnover flashes spaced 50 ms apart - DCBQ 2,6-dichloro-p-benzoquinone - Fo yield of chlorophyll fluorescence when QA is fully oxidized - Fm yield of chlorophyll fluorescence when QA is fully reduced - Fx yield of chlorophyll fluorescence when QA is fully reduced at inactive PS II centers, but fully oxidized at active PS II centers - Pheo pheophytin - P680 the primary donor of Photosystem II - PPFD photosynthetic photon flux density - QA Primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

18.
The nature of excitation energy transfer and charge separation in isolated Photosystem II reaction centers is an area of considerable interest and controversy. Excitation energy transfer from accessory chlorophyll a to the primary electron donor P680 takes place in tens of picoseconds, although there is some evidence that thermal equilibration of the excitation between P680 and a subset of the accessory chlorophyll a occurs on a 100-fs timescale. The intrinsic rate for charge separation at low temperature is accepted to be ca. (2 ps)–1, and is based on several measurements using different experimental techniques. This rate is in good agreement with estimates based on larger sized particles, and is similar to the rate observed with bacterial reaction centers. However, near room temperature there is considerable disagreement as to the observed rate for charge separation, with several experiments pointing to a ca. (3 ps)–1 rate, and others to a ca. (20 ps)-1 rate. These processes and the experiments used to measure them will be reviewed.Abbreviations Chl chlorophyll - FWHM full-width at half-maximum - Pheo pheophytin - PS II Photosystem II - P680 primary electron donor of the Photosystem II reaction center - RC reaction center The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

19.
The reversible inhibition of Photosystem II by salicylaldoxime was studied in spinach D-10 particles by fluorescence, optical absorption, and electron spin resonance spectroscopy. In the presence of 15 mM salicylaldoxime, the initial fluorescence yield was raised to the level of the maximum fluorescence, indicating efficient charge recombination between reduced pheophytin (Ph) and P680+. In agreement with the rapid (ns) backreaction expected between Ph and P680+, the optical absorption transient at 820 mm was not observed. When the particles were washed free of salicylaldoxime, the optical absorption transient resulting from the rereduction of P680+ was restored to the µs timescale. These results, along with the previously observed inhibition of electron transport reactions and diminution of the 515-nm absorption change in chloroplasts [Golbeck, J.H. (1980) Arch Biochem Biophys 202, 458–466], are consistent with a site of inhibition between Ph and QA in Photosystem II. ESR Signal IIf and Signal Its were abolished in the presence of 25 mM salicylaldoxime, but both signals could be recovered by washing the D-10 particles free of the inhibitor. The loss of Signal Ilf is most likely a consequence of the inhibition between Ph and QA; the rapid charge recombination between Ph and P680+ would preclude electron transfer from an electron donor on the oxidizing side of Photosystem II. The loss of Signal Its may be due to a change in the environment of the donor complex such that the semiquinone radical giving rise to Signal Its interacts with a nearby reductant.Abbreviations D1 electron donor to P680+ in oxygen-inhibited chloroplasts - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F0 prompt chlorophyll a fluorescence yield - Fi initial chlorophyll a fluorescence yield - Fmax maximum chlorophyll a fluorescence yield - Fvar variable chlorophyll a fluorescence yield - FWHM full width at half maximum - Mes 2-(N-morpholino) ethanesulfonic acid - P680 reaction center chlorophyll a of photosystem II - Ph pheophytin intermediate electron acceptor - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - Tris tris(hydroxymethyl)aminomethane - Z electron donor to P680+  相似文献   

20.
The influence of UV-B irradiation on photosynthetic oxygen evolution by isolated spinach thylakoids has been investigated using thermoluminescence measurements. The thermoluminescence bands arising from the S2QB - (B band) and S2QA (Q band) charge recombination disappeared with increasing UV-B irradiation time. In contrast, the C band at 50°C, arising from the recombination of QA - with an accessory donor of Photosystem II, was transiently enhanced by the UV-B irradiation. The efficiency of DCMU to block QA to QB electron transfer decreased after irradiation as detected by the incomplete suppression of the B band by DCMU. The flash-induced oscillatory pattern of the B band was modified in the UV-B irradiated samples, indicating a decrease in the number of centers with reduced QB. Based on the results of this study, UV-B irradiation is suggested to damage both the donor and acceptor sides of Photosystem II. The damage of the water-oxidizing complex does not affect a specific S-state transition. Instead, charge stabilization is enhanced on an accessory donor. The acceptor-side modifications decrease the affinity of DCMU binding. This effect is assumed to reflect a structural change in the QB/DCMU binding site. The preferential loss of dark stable QB - may be related to the same structural change or could be caused by the specific destruction of reduced quinones by the UV-B light.Abbreviations Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA first quinone electron acceptor of PS II - QB second quinone electron acceptor of PS II - Tyr-D accessory electron donor of PS II - S0-S4 charge storage states of the water-oxidizing complex  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号