首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1 h, that was sustained for 24 h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1 h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH–CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities.  相似文献   

2.
Sulfur mustard has been used as a vesicant chemical warfare agent. To understand the mechanism by which mustard gas exposure causes respiratory damage, we have used 2-chloroethyl ethyl sulfide (CEES) as a mustard analog. Our initial studies have shown that guinea pigs exposed to CEES intratracheally accumulate high levels of TNF-alpha. Accumulation of TNF-alpha leads to activation of both acid and neutral sphingomyelinases, resulting in high accumulation of ceramides, a second messenger involved in cell apoptosis. In addition, NF-kappa B was activated for a short period (1-2 h after exposure) as determined by mobility shift assay. Supershift assays indicated that both p50 and p65 of NF-kappa B were activated due to CEES exposure. However, NF-kappa B rapidly disappeared after 2 h. It is possible that the initial activation of NF-kappa B was an adaptive response to protect the cells from damage since NF-kappa B is known to inhibit TNF-alpha/ceramide-induced cell apoptosis. Since NF-kappa B disappeared after 2 h, the cells continued being damaged owing to accumulation of ceramides and activation of several caspases, leading to apoptosis.  相似文献   

3.
Exposure to mustard gas causes inflammatory lung diseases including acute respiratory distress syndrome (ARDS). A defect in the lung surfactant system has been implicated as a cause of ARDS. A major component of lung surfactant is dipalmitoyl phosphatidylcholine (DPPC) and the major pathway for its synthesis is the cytidine diphosphocholine (CDP-choline) pathway. It is not known whether the ARDS induced by mustard gas is mediated by its direct effects on some of the enzymes in the CDP-choline pathway. In the present study we investigated whether mustard gas exposure modulates the activity of cholinephosphotransferase (CPT) the terminal enzyme by CDP-choline pathway. Adult guinea pigs were intratracheally infused with single doses of 2-chloroethyl ethyl sulfide (CEES) (0.5 mg/kg b.wt. in ethanol). Control animals were injected with vehicles only. The animals were sacrificed at different time and the lungs were removed after perfusion with physiological saline. CPT activity increased steadily up to 4 h and then decreased at 6 h and stabilized at 7 days in both mitochondria and microsomes. To determine the dose-dependent effect of CEES on CPT activity we varied the doses of CEES (0.5-6.0 mg/kg b.wt.) and sacrificed the animals at 1 h and 4 h. CPT activity showed a dose-dependent increase of up to 2.0 mg/kg b.wt. of CEES in both mitochondria and microsomes then decreased at 4.0 mg/kg b.wt. For further studies we used a fixed single dose of CEES (2.0 mg/kg b.wt.) and fixed exposure time (7 days). Lung injury was determined by measuring the leakage of iodinated-bovine serum albumin into lung tissue and expressed as the permeability index. CEES exposure (2.0 mg/kg b.wt. for 7 days) caused a significant decrease of both CPT gene expression (approximately 1.7-fold) and activity (approximately 1.5-fold) in the lung. This decrease in CPT activity was not associated with any mutation of the CPT gene. Previously we reported that CEES infusion increased the production of ceramides which are known to modulate PC synthesis. To determine whether ceramides affect microsomal CPT activity the lung microsomal fraction was incubated with different concentrations of C(2)-ceramide prior to CPT assay. CPT activity decreased significantly with increasing dose and time. The present study indicates that CEES causes lung injury and significantly decreases CPT gene expression and activity. This decrease in CPT activity was not associated with any mutation of the CPT gene is probably mediated by accumulation of ceramides. CEES induced ceramide accumulation may thus play an important role in the development of ARDS by modulating CPT enzyme.  相似文献   

4.

Background  

Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD), is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES), are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS) significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO) production via suppression of inducible NO synthase (iNOS) protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC) would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH) synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds.  相似文献   

5.
Mustard gas exposure causes inflammatory lung diseases. Many inflammatory lung diseases are associated with oxidative stress. Reactive oxygen species (ROS) are involved in the maintenance of physiological functions. In tissues, it is therefore essential to maintain a steady-state level of antioxidant activity to allow both for the physiological functions of ROS to proceed and at the same time preventing tissue damage. We have recently reported that mustard gas exposure decreases the overall activity of superoxide dismutase (SOD). In the present study, we investigated the effects of mustard gas on each of the three isozymes: SOD-1 (Cu/Zn), SOD-2 (Mn), and SOD-3 (extracellular). Adult guinea pigs were intratracheally injected single doses of 2-chloroethyl ethyl sulfide (CEES) (2 mg/kg body weight) in ethanol. Control animals were injected with vehicle in the same way. The animals were sacrificed after 7 days, and lungs were removed after perfusion with physiological saline. Lung injury was established by measuring the leakage of iodinated-BSA into lung tissue. Mustard gas exposure caused a significant increase in the activity of SOD-1 (35%). However, the SOD-3 activity which is the predominant type in lung was significantly decreased (62%), whereas no change was observed in SOD-2 activity. Thus the decrease in the total activity of SOD was primarily due to the SOD-3 isozyme. Northern blot analysis indicated 3.5-fold increased expression of SOD-1 in mustard gas exposed lung, but no significant change in the expression of SOD-2 and SOD-3 was observed. Mustard gas exposure did not cause mutation in the coding region of SOD-1 gene while causing modulation in expression levels. The protein levels of SOD-1, SOD-2, and SOD-3 were not altered significantly in the mustard gas exposed lung. Our results indicate that the overall decrease in the activity of SOD by mustard gas exposure is probably mediated by direct inactivation of the SOD-3 gene or the enzyme itself. This decrease in the activity of SOD-3 may be due to the cleavage of active form of the protein to an inactive form. The existence of active and inactive forms of SOD-3 as a result of shifts in Cys-Cys disulfide bonding has been described in human, recently. Studies are underway in our laboratory to investigate whether mustard gas induced inactivation of SOD-3 in lung is similarly mediated by a change in Cys-Cys disulfide bonding.  相似文献   

6.
Intratracheal infusion of 2-chloroethyl ethyl sulfide (CEES), a mustard gas analog and a chemical warfare agent is known to cause massive damage to lung. The purpose of this study was to determine whether intratracheal CEES infusion causes neuronal damage. Histological, immunohistochemical, and Western blot studies indicated that CEES treatment caused dose-dependent increases in blood cell aggregation, microglial cell number, microglial activation, and brain inflammation. In addition, an increased expression of α-synuclein and a decreased expression of the dopamine transporter were observed. The results indicate that intratracheal CEES infusion is associated with changes in brain morphology mediated by an increase in α-synuclein expression, leading to neurotoxicity in a guinea pig model. These changes may be mediated by oxidative stress. Furthermore, the present study indicates for the first time that intratracheal infusion of a single dose of CEES can cause neuroinflammation, which may lead to neurological disorders in later part of life.  相似文献   

7.
Sulfur mustard (SM) is a potent vesicating agent that produces debilitating blisters and ulcerating lesions on the skin which are characteristically slow to heal. There are currently no specific medical countermeasures to prevent SM-induced vesication and therefore SM remains a major military threat. To investigate the mechanism by which SM causes these injuries we aimed to identify the cellular proteins that are important in the vesicant response and pathology of SM. Membrane and membrane-associated proteins that are targets for direct binding by SM were compared to targets directly bound by CEES (chloroethylethylsulphide). As CEES is a less potent blistering agent compared to SM, it was hypothesised that differences in the binding of these two mustards could reveal key proteins directly involved in the mustard vesicant response. Human cellular membranes fractionated from HaCaT cells were exposed to 14C-SM or 14C-CEES and the membrane proteins to which SM or CEES bound were separated by 2D gel electrophoresis, located by fluorography and subsequently identified using mass spectrometry. A number of proteins were identified that were differentially labelled by SM and CEES. Actin, annexin A2 and keratin 9 were labelled with SM at a higher intensity than was seen with the same concentration of CEES. Therefore results from these studies suggest that SM binding to these proteins could contribute to the complex pathology seen following SM exposure.  相似文献   

8.
Sulfur mustard (SM) is an old chemical warfare agent causing blisters (vesicant). Skin toxicity is thought to be partly caused by SM induced DNA damage. SM and the hemi mustard 2-chloroethyl ethyl sulfide (CEES) are bi- and monofunctional DNA alkylating agents, respectively. Both chemicals react especially with N7 guanine. The most abundant adducts are 7-hydroxyethylthioethylguanine for SM (61%) and 7-ethyl thioethylguanine for CEES. Thus, DNA alkylation should serve as a biomarker of SM exposure. A specific monoclonal antibody (2F8) was previously developed to detect SM and CEES adducts at N7 position by means of immunoslotblot (ISB) technique (van der Schans et al. (2004) [16]). Nitrogen mustards (HN-1, HN-2, HN-3) are alkylating agents with structural similarities, which can form DNA adducts with N7 guanine. The aim of the presented work was to modify the van der Schans protocol for use in a field laboratory and to test the cross reactivity of the 2F8 antibody against nitrogen mustards. Briefly, human keratinocytes were exposed to SM and CEES (0–300 μM, 60 min) or HN-1, HN-2, HN-3 (120 min). After exposure, cells were scraped and DNA was isolated and normalized. 1 μg DNA was transferred to a nitrocellulose membrane using a slotblot technique. After incubation with 2F8 antibody, the DNA adducts were visualized with chromogen staining (3,3′-diaminobenzidine (DAB), SeramunGrün). Blots were photographed and signal intensity was quantified. In general, DAB was superior to SeramunGrün stain. A staining was seen from 30 nM to 300 μM of SM or CEES, respectively. However, statistically significant DNA adducts were detected after CEES and SM exposure above 30 μM which is below the vesicant threshold. No signal was observed after HN-1, HN-2, HN-3 exposure. The total hands-on time to complete the assay was about 36 h. Further studies are necessary to validate SM or CEES exposure in blister roofs of exposed patients.  相似文献   

9.
Mustard gas exposure causes adult respiratory distress syndrome associated with lung injury. The purpose of this study was to investigate whether an antioxidant, such as N-acetylcysteine (NAC), has any protective effect. Guinea pigs were given single exposure (0.5-6 mg/kg body weight) of 2-chloroethyl ethyl sulfide (CEES) as a mustard analogue intratracheally and maintained for various lengths of time (1 h to 21 days). Within 1 h of CEES infusion at 4 mg/kg, high levels of tumor necrosis factor alpha (TNF-alpha), ceramides, and nuclear factor kappaB accumulated in lung and alveolar macrophages. Both acid and neutral sphingomyelinases were activated within 4 h. These signal transduction events were associated with alteration in the oxygen defense system. Within 1 h of exposure to CEES (6 mg/kg body weight), there was 10-fold increase in the (125)I-BSA leakage into lung tissue, indicating severe lung injury. Although low level of CEES exposure (0.5 mg/kg body weight) produced symptoms of chemical burn in lung as early as 1 h after exposure, the severity of edema, congestion, hemorrhage, and inflammation increased progressively with time (1 h to 21 days). Feeding of single dose of NAC (0.5 g) by gavage just before the CEES infusion was ineffective to counteract these effects. However, consumption of the antioxidant in drinking water for 3 or 30 days prior to CEES exposure significantly inhibited the induction of TNF-alpha, activation of neutral and acid sphingomyelinases, production of ceramides, activation of caspases, leakage of (125)I-bovine serum albumin ((125)I-BSA) into lung tissue, and histological alterations in lung. Pretreatment with NAC for 3 and 30 days protected against 69-76% of the acute lung injury. Therefore, NAC may be an antidote for CEES-induced lung injury.  相似文献   

10.
11.
The incorporation of the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) into hair of newborn mice was investigated in order to contribute to the validation of PhIP in hair as a suitable biomarker for human dietary exposure. Black mice (C57BL/6J; 7-9 days old) were given graded doses of [3H]-PhIP subcutaneously during the start of the hair growth period. The distribution of [3H]-PhIP and incorporation into hair were investigated by tape-section autoradiography. Almost all the radioactivity in hair represented PhIP as shown by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). A dose-response proportionality of incorporation into hair was found when incorporation was determined by liquid scintillation counting. Autoradiography showed that PhIP was rapidly cleared from the skin, but remained for at least 28 days in the part of the hair shafts which was formed during the exposure period. The present results obtained using the mouse as a model, further support the suggestion that PhIP in hair may be a suitable biomarker for human exposure to dietary PhIP.  相似文献   

12.
The incorporation of the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) into hair of newborn mice was investigated in order to contribute to the validation of PhIP in hair as a suitable biomarker for human dietary exposure. Black mice (C57BL/6J; 7-9 days old) were given graded doses of [3H]-PhIP subcutaneously during the start of the hair growth period. The distribution of [3H]-PhIP and incorporation into hair were investigated by tape-section autoradiography. Almost all the radioactivity in hair represented PhIP as shown by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). A dose-response proportionality of incorporation into hair was found when incorporation was determined by liquid scintillation counting. Autoradiography showed that PhIP was rapidly cleared from the skin, but remained for at least 28 days in the part of the hair shafts which was formed during the exposure period. The present results obtained using the mouse as a model, further support the suggestion that PhIP in hair may be a suitable biomarker for human exposure to dietary PhIP.  相似文献   

13.
Generation of skin appendages in engineered skin substitutes has been limited by lack of trichogenic potency in cultured postnatal cells. To investigate the feasibility and the limitation of hair regeneration, engineered skin substitutes were prepared with chimeric populations of cultured human keratinocytes from neonatal foreskins and cultured murine dermal papilla cells from adult GFP transgenic mice and grafted orthotopically to full-thickness wounds on athymic mice. Non-cultured dissociated neonatal murine-only skin cells, or cultured human-only skin keratinocytes and fibroblasts without dermal papilla cells served as positive and negative controls respectively. In this study, neonatal murine-only skin substitutes formed external hairs and sebaceous glands, chimeric skin substitutes formed pigmented hairs without sebaceous glands, and human-only skin substitutes formed no follicles or glands. Although chimeric hair cannot erupt readily, removal of upper skin layer exposed keratinized hair shafts at the skin surface. Development of incomplete pilosebaceous units in chimeric hair corresponded with upregulation of hair-related genes, LEF1 and WNT10B, and downregulation of a marker of sebaceous glands, Steroyl-CoA desaturase. Transepidermal water loss was normal in all conditions. This study demonstrated that while sebaceous glands may be involved in hair eruption, they are not required for hair development in engineered skin substitutes.  相似文献   

14.
Treatment of excessive hair growth is an important issue in both dermatological and cosmetic practice. In contrast to treatments with medication, most physical methods are treatments that focus on the hair follicle. To obtain insight in the failure behavior of the anchorage of hairs, hairs were extracted (in vitro) from pig skin at a speed of 0.1mm/s, one at a time. The pulling force and tweezers displacement were recorded. The extracted hairs were classified with respect to the phase in the growing cycle: anagen (growing phase), telogen (resting phase) or other (catagen phase or unable to determine). The anagen hairs showed a different relation between the tweezers displacement and the pulling force than the telogen hairs. Moreover, the maximum force that could be applied before a hair was extracted proved to be lower for anagen hairs than for telogen hairs (0.36N, 1.8N, respectively). The extracted hair length, defined as the part of the hair that had been embedded in the skin which was extracted, was higher for anagen hairs than for telogen hairs (4.8mm, 3.0mm, respectively). Removing proximal skin tissue and the embedded parts of the anagen hair (root) resulted in a change of the extraction curves. The results indicate that two phenomena play a role in the anchorage of anagen hairs. We have proposed a model for the extraction of an anagen hair that has been based on these results: first the interface between hair and skin that is located around the inner root sheath (IRS) starts to fail, followed by failing of the hair itself in the region where the hair keratinizes.  相似文献   

15.
16.
Two types of hair changes occurred in an experimental group of captive tree shrews (Tupaia glis) living on an artificial diet in dark laboratory quarters. The most common variation in the fur consisted of a gradual type of hair loss resulting in a sparse coat and dry skin. The second type of hair change occurred in a female tree shrew in which patches of hair fell out all over the body. White hair regrowth followed exposure to sunlight, with subsequent repigmentation of the bases of the new hairs. Tree shrews suffering from the first type of hair disorder also improved when exposed to sunlight.  相似文献   

17.
The purpose of this study was to develop antioxidant liposomes as an antidote for mustard gas–induced lung injury in a guinea pig model. Five liposomes (LIP‐1, LIP‐2, LIP‐3, LIP‐4, and LIP‐5) were tested with differing levels of phospholipid, cholesterol, phosphatidic acid, tocopherol (α, γ, δ), N‐acetylcysteine (NAC), and glutathione (GSH). A single dose (200 µL) of liposome was administered intratracheally 5 min or 1 h after exposure to 2‐chloroethyl ethyl sulfide (CEES). The animals were sacrificed either 2 h after exposure (for lung injury study) or 30 days after exposure (for histology study). The liposomes offered 9%–76% protection against lung injury. The maximum protection was with LIP‐2 (71.5% protection) and LIP‐4 (75.4%) when administered 5 min after CEES exposure. Delaying the liposome administration 1 h after CEES exposure decreased the efficacy. Both liposomes contained 11 mM α‐tocopherol, 11 mM γ‐tocopherol, and 75 mM NAC. However, LIP‐2 contained additionally 5 mM δ‐tocopherol. Overall, LIP‐2 and LIP‐4 offered significant protection by controlling the recruitment of neutrophils, eosinophils, and the accumulation of septal and perivascular fibrin and collagen. However, LIP‐2 showed better protection than LIP‐4 against the accumulation of red blood cells in the bronchi, alveolar space, arterioles and veins, and fibrin and collagen deposition in the alveolar space. The antifibrotic effect of the liposomes, particularly LIP‐2, was further evident by a decreased level of lipid peroxidation and hydroxyproline in the lung. Thus, antioxidant liposomes containing both NAC and vitamin E are an effective antidote against CEES‐induced lung injury. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:143–153, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20279  相似文献   

18.
Msx2-deficient mice exhibit progressive hair loss, starting at P14 and followed by successive cycles of wavelike regrowth and loss. During the hair cycle, Msx2 deficiency shortens anagen phase, but prolongs catagen and telogen. Msx2-deficient hair shafts are structurally abnormal. Molecular analyses suggest a Bmp4/Bmp2/Msx2/Foxn1 acidic hair keratin pathway is involved. These structurally abnormal hairs are easily dislodged in catagen implying a precocious exogen. Deficiency in Msx2 helps to reveal the distinctive skin domains on the same mouse. Each domain cycles asynchronously - although hairs within each skin domain cycle in synchronized waves. Thus, the combinatorial defects in hair cycling and differentiation, together with concealed skin domains, account for the cyclic alopecia phenotype.  相似文献   

19.
Acute neurogenic or non-neurogenic inflammation was elicited in skin patches innervated by the saphenous nerve of anaesthetized Sprague Dawley rats. Lambda carrageenan was used to induce non-neurogenic inflammation, mustard oil (allyl-iso-thio-cyanate) or antidromic nerve stimulation to induce neurogenic inflammation. Antidromic nerve stimulation yielded plasma extravasation but no significant sensitization of unmyelinated nociceptor units. In contrast, mustard oil and carrageenan yielded plasma extravasation and sensitization of nociceptors, though carrageenan sensitized only part of them. Sensitization resulted in ongoing spike discharges and in a shift of response curves to lower temperatures when controlled radiant heat stimuli were applied to the receptive fields. Responses to mechanical stimuli with v. FREY hairs were not significantly altered. Effects of neurogenic and non-neurogenic inflammation on unmyelinated nociceptor units are compared.  相似文献   

20.
Phospholipase Cdelta1 is required for skin stem cell lineage commitment   总被引:1,自引:0,他引:1  
Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in phosphoinositide turnover and is involved in a variety of physiological functions. Here we report that PLCdelta(1)-deficient mice undergo progressive hair loss in the first postnatal hair cycle. Epidermal hyperplasia was observed, and many hairs in the skin of PLCdelta(1)-deficient mice failed to penetrate the epidermis and became zigzagged owing to occlusion of the hair canal. Two major downstream signals of PLC, calcium elevation and protein kinase C activation, were impaired in the keratinocytes and skin of PLCdelta(1)-deficient mice. In addition, many cysts that had remarkable similarities to interfollicular epidermis, as well as hyperplasia of sebaceous glands, were observed. Furthermore, PLCdelta(1)-deficient mice developed spontaneous skin tumors that had characteristics of both interfollicular epidermis and sebaceous glands. From these results, we conclude that PLCdelta(1) is required for skin stem cell lineage commitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号