首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang CB  Zhou J  Zhou Y  Lu ZL 《PloS one》2010,5(12):e15075

Background

How the visual system combines information from the two eyes to form a unitary binocular representation of the external world is a fundamental question in vision science that has been the focus of many psychophysical and physiological investigations. Ding & Sperling (2006) measured perceived phase of the cyclopean image, and developed a binocular combination model in which each eye exerts gain control on the other eye''s signal and over the other eye''s gain control. Critically, the relative phase of the monocular sine-waves plays a central role.

Methodology/Principal Findings

We used the Ding-Sperling paradigm but measured both the perceived contrast and phase of cyclopean images in three hundred and eighty combinations of base contrast, interocular contrast ratio, eye origin of the probe, and interocular phase difference. We found that the perceived contrast of the cyclopean image was independent of the relative phase of the two monocular gratings, although the perceived phase depended on the relative phase and contrast ratio of the monocular images. We developed a new multi-pathway contrast-gain control model (MCM) that elaborates the Ding-Sperling binocular combination model in two ways: (1) phase and contrast of the cyclopean images are computed in separate pathways, although with shared cross-eye contrast-gain control; and (2) phase-independent local energy from the two monocular images are used in binocular contrast combination. With three free parameters, the model yielded an excellent account of data from all the experimental conditions.

Conclusions/Significance

Binocular phase combination depends on the relative phase and contrast ratio of the monocular images but binocular contrast combination is phase-invariant. Our findings suggest the involvement of at least two separate pathways in binocular combination.  相似文献   

2.
How do signals from the 2 eyes combine and interact? Our recent work has challenged earlier schemes in which monocular contrast signals are subject to square-law transduction followed by summation across eyes and binocular gain control. Much more successful was a new 'two-stage' model in which the initial transducer was almost linear and contrast gain control occurred both pre- and post-binocular summation. Here we extend that work by: (i) exploring the two-dimensional stimulus space (defined by left- and right-eye contrasts) more thoroughly, and (ii) performing contrast discrimination and contrast matching tasks for the same stimuli. Twenty-five base-stimuli made from 1 c/deg patches of horizontal grating, were defined by the factorial combination of 5 contrasts for the left eye (0.3-32%) with five contrasts for the right eye (0.3-32%). Other than in contrast, the gratings in the two eyes were identical. In a 2IFC discrimination task, the base-stimuli were masks (pedestals), where the contrast increment was presented to one eye only. In a matching task, the base-stimuli were standards to which observers matched the contrast of either a monocular or binocular test grating. In the model, discrimination depends on the local gradient of the observer's internal contrast-response function, while matching equates the magnitude (rather than gradient) of response to the test and standard. With all model parameters fixed by previous work, the two-stage model successfully predicted both the discrimination and the matching data and was much more successful than linear or quadratic binocular summation models. These results show that performance measures and perception (contrast discrimination and contrast matching) can be understood in the same theoretical framework for binocular contrast vision.  相似文献   

3.
The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1.  相似文献   

4.
Multisensory integration is a common feature of the mammalian brain that allows it to deal more efficiently with the ambiguity of sensory input by combining complementary signals from several sensory sources. Growing evidence suggests that multisensory interactions can occur as early as primary sensory cortices. Here we present incompatible visual signals (orthogonal gratings) to each eye to create visual competition between monocular inputs in primary visual cortex where binocular combination would normally take place. The incompatibility prevents binocular fusion and triggers an ambiguous perceptual response in which the two images are perceived one at a time in an irregular alternation. One key function of multisensory integration is to minimize perceptual ambiguity by exploiting cross-sensory congruence. We show that a haptic signal matching one of the visual alternatives helps disambiguate visual perception during binocular rivalry by both prolonging the dominance period of the congruent visual stimulus and by shortening its suppression period. Importantly, this interaction is strictly tuned for orientation, with a mismatch as small as 7.5° between visual and haptic orientations sufficient to annul the interaction. These results indicate important conclusions: first, that vision and touch interact at early levels of visual processing where interocular conflicts are first detected and orientation tunings are narrow, and second, that haptic input can influence visual signals outside of visual awareness, bringing a stimulus made invisible by binocular rivalry suppression back to awareness sooner than would occur without congruent haptic input.  相似文献   

5.
Cai YC  Lu S  Li CY 《PloS one》2012,7(5):e38093
Several types of suppression phenomena have been observed in the visual system. For example, the ability to detect a target stimulus is often impaired when the target is embedded in a high-contrast surround. This contextual modulation, known as surround suppression, was formerly thought to occur only in the periphery. Another type of suppression phenomena is interocular suppression, in which the sensitivity to a monocular target is reduced by a superimposed mask in the opposite eye. Here, we explored how the two types of suppression operating across different spatial regions interact with one another when they simultaneously exert suppressive influences on a common target presented at the fovea. In our experiments, a circular target grating presented to the fovea of one eye was suppressed interocularly by a noise pattern of the same size in the other eye. The foveal stimuli were either shown alone or surrounded by a monocular annular grating. The orientation and eye-of-origin of the surround grating were varied. We found that the detection of the foveal target subjected to interocular suppression was severely impaired by the addition of the surround grating, indicating strong surround suppression in the fovea. In contrast, when the interocular suppression was released by superimposing a binocular fusion ring onto both the target and the dichoptic mask, the surround suppression effect was found to be dramatically decreased. In addition, the surround suppression was found to depend on the contrast of the dichoptic noise with the greatest surround suppression effect being obtained only when the noise contrast was at an intermediate level. These findings indicate that surround suppression and interocular suppression are not independent of each other, but there are strong interactions between them. Moreover, our results suggest that strong surround suppression may also occur at the fovea and not just the periphery.  相似文献   

6.
Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements.  相似文献   

7.
Lehmann K  Löwel S 《PloS one》2008,3(9):e3120

Background

Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known.

Methodology/Principal Findings

We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift.

Conclusions/Significance

These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is most pronounced in young animals, reduced but present in adolescence and absent in fully mature animals older than 110 days of age. Mice are thus not basically different in ocular dominance plasticity from cats and monkeys which is an absolutely essential prerequisite for their use as valid model systems of human visual disorders.  相似文献   

8.
We view the world with two eyes and yet are typically only aware of a single, coherent image. Arguably the simplest explanation for this is that the visual system unites the two monocular stimuli into a common stream that eventually leads to a single coherent sensation. However, this notion is inconsistent with the well-known phenomenon of rivalry; when physically different stimuli project to the same retinal location, the ensuing perception alternates between the two monocular views in space and time. Although fundamental for understanding the principles of binocular vision and visual awareness, the mechanisms under-lying binocular rivalry remain controversial. Specifically, there is uncertainty about what determines whether monocular images undergo fusion or rivalry. By taking advantage of the perceptual phenomenon of color contrast, we show that physically identical monocular stimuli tend to rival-not fuse-when they signify different objects at the same location in visual space. Conversely, when physically different monocular stimuli are likely to represent the same object at the same location in space, fusion is more likely to result. The data suggest that what competes for visual awareness in the two eyes is not the physical similarity between images but the similarity in their perceptual/empirical meaning.  相似文献   

9.
When two eyes are simultaneously stimulated by two inconsistent images, the observer’s perception switches between the two images every few seconds such that only one image is perceived at a time. This phenomenon is named binocular rivalry (BR). However, sometimes the perceived image is a piecemeal mixed of two stimuli known as piecemeal perceptions. In this study, a BR task was designed in which orthogonal gratings are presented to the two eyes. The subjects were trained to report 3 states: dominant perceptions (two state matching to perceived grating orientation) and the piecemeal perceptions (third state). We explored the scale-freeness of the BR percept durations considering the two dominant monocular states as well as the piecemeal transition state using detrended fluctuation analysis. Our results reproduced the previous finding of memory in the perceptual switches between the monocular perception states. Moreover, we showed that such memory also exists in the transitory periods of dichoptic piecemeal perceptions. These results support our hypothesis that the pool of unstable piecemeal perceptions could be regarded as separate multiple low-depth basin in the perceptual state landscape. Likewise, the transitions from these piecemeal state basins and stable monocular state basins are faced with resistance. Therefore there is inertia and memory (i.e. positive serial correlation) for the piecemeal dichoptic perception states as well as the monocular states.  相似文献   

10.
In Li and Atick's [1, 2] theory of efficient stereo coding, the two eyes' signals are transformed into uncorrelated binocular summation and difference signals, and gain control is applied to the summation and differencing channels to optimize their sensitivities. In natural vision, the optimal channel sensitivities vary from moment to moment, depending on the strengths of the summation and difference signals; these channels should therefore be separately adaptable, whereby a channel's sensitivity is reduced following overexposure to adaptation stimuli that selectively stimulate that channel. This predicts a remarkable effect of binocular adaptation on perceived direction of a dichoptic motion stimulus [3]. For this stimulus, the summation and difference signals move in opposite directions, so perceived motion direction (upward or downward) should depend on which of the two binocular channels is most strongly adapted, even if the adaptation stimuli are completely static. We confirmed this prediction: a single static dichoptic adaptation stimulus presented for less than 1 s can control perceived direction of a subsequently presented dichoptic motion stimulus. This is not predicted by any current model of motion perception and suggests that the visual cortex quickly adapts to the prevailing binocular image statistics to maximize information-coding efficiency.  相似文献   

11.
In the early visual system, suppression occurs between neurons representing different stimulus properties. This includes features such as orientation (cross-orientation suppression), eye-of-origin (interocular suppression) and spatial location (surround suppression), which are thought to involve distinct anatomical pathways. We asked if these separate routes to suppression can be differentiated by their pattern of gain control on the contrast response function measured in human participants using steady-state electroencephalography. Changes in contrast gain shift the contrast response function laterally, whereas changes in response gain scale the function vertically. We used a Bayesian hierarchical model to summarise the evidence for each type of gain control. A computational meta-analysis of 16 previous studies found the most evidence for contrast gain effects with overlaid masks, but no clear evidence favouring either response gain or contrast gain for other mask types. We then conducted two new experiments, comparing suppression from four mask types (monocular and dichoptic overlay masks, and aligned and orthogonal surround masks) on responses to sine wave grating patches flickering at 5Hz. At the occipital pole, there was strong evidence for contrast gain effects in all four mask types at the first harmonic frequency (5Hz). Suppression generally became stronger at more lateral electrode sites, but there was little evidence of response gain effects. At the second harmonic frequency (10Hz) suppression was stronger overall, and involved both contrast and response gain effects. Although suppression from different mask types involves distinct anatomical pathways, gain control processes appear to serve a common purpose, which we suggest might be to suppress less reliable inputs.  相似文献   

12.
Figures that can be seen in more than one way are invaluable tools for the study of the neural basis of visual awareness, because such stimuli permit the dissociation of the neural responses that underlie what we perceive at any given time from those forming the sensory representation of a visual pattern. To study the former type of responses, monkeys were subjected to binocular rivalry, and the response of neurons in a number of different visual areas was studied while the animals reported their alternating percepts by pulling levers. Perception-related modulations of neural activity were found to occur to different extents in different cortical visual areas. The cells that were affected by suppression were almost exclusively binocular, and their proportion was found to increase in the higher processing stages of the visual system. The strongest correlations between neural activity and perception were observed in the visual areas of the temporal lobe. A strikingly large number of neurons in the early visual areas remained active during the perceptual suppression of the stimulus, a finding suggesting that conscious visual perception might be mediated by only a subset of the cells exhibiting stimulus selective responses. These physiological findings, together with a number of recent psychophysical studies, offer a new explanation of the phenomenon of binocular rivalry. Indeed, rivalry has long been considered to be closely linked with binocular fusion and stereopsis, and the sequences of dominance and suppression have been viewed as the result of competition between the two monocular channels. The physiological data presented here are incompatible with this interpretation. Rather than reflecting interocular competition, the rivalry is most probably between the two different central neural representations generated by the dichoptically presented stimuli. The mechanisms of rivalry are probably the same as, or very similar to, those underlying multistable perception in general, and further physiological studies might reveal much about the neural mechanisms of our perceptual organization.  相似文献   

13.
Cao Y  Grossberg S 《Spatial Vision》2005,18(5):515-578
A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model includes two main new developments: (1) It clarifies how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain data about stereopsis. This feedback has previously been used to explain data about 3D figure-ground perception. (2) It proposes that the binocular false match problem is subsumed under the Gestalt grouping problem. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The enhanced model explains all the psychophysical data previously simulated by Grossberg and Howe (2003), such as contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, and da Vinci stereopsis. It also explains psychophysical data about perceptual closure and variations of da Vinci stereopsis that previous models cannot yet explain.  相似文献   

14.
When the eyes view incompatible images, binocular rivalry usually results: image constituents in corresponding parts of the monocular visual fields are not perceived simultaneously. We asked naive undergraduates to view dichoptic, dioptic, and monoptic plaids. The dichoptic images evoked strong binocular rivalry when contrast was high, especially if the component gratings were set in motion. Nevertheless, the subjects' visual systems integrated the motion information across the two eyes, producing a unitary motion percept that did not reflect the image in either eye alone. By manipulating the relative spatial scale of the gratings, we affected how well the motion cohered: the results were remarkably similar between dichoptic and traditional dioptic plaids. By manipulating the relative speed of the gratings, we systematically affected the perceived direction of motion of the plaids; these results were also remarkably similar for dichoptic and dioptic plaids. Thus, the motion analysis of dichoptic and dioptic plaids is proceeding according to very similar rules, even though the dichoptic images are incompatible and evoke binocular rivalry.  相似文献   

15.
Tian J  Wang C  Sun F 《Spatial Vision》2003,16(5):407-418
When gratings moving in different directions are presented separately to the two eyes, we typically perceive periods of the combination of motion in the two eyes as well as periods of one or the other monocular motions. To investigate whether such interocular motion combination is determined by the intersection-of-constraints (IOC) or vector average mechanism, we recorded both optokinetic nystagmus eye movements (OKN) and perception during dichoptic presentation of moving gratings and random-dot patterns with various differences of interocular motion direction. For moving gratings, OKN alternately tracks not only the direction of the two monocular motions but also the direction of their combined motion. The OKN in the combined motion direction is highly correlated with the perceived direction of combined motion; its velocity complies with the IOC rule rather than the vector average of the dichoptic motion stimuli. For moving random-dot patterns, both OKN and perceived motion alternate only between the directions of the two monocular motions. These results suggest that interocular motion combination in dichoptic gratings is determined by the IOC and depends on their form.  相似文献   

16.
Binocular rivalry is a fascinating perceptual phenomenon that has been characterized extensively at the psychophysical level. However, the underlying neural mechanism remains poorly understood. In particular, the role of the early visual pathway remains controversial. In this study, we used voltage-sensitive dye imaging to measure the spatiotemporal activity patterns in cat area 18 evoked by dichoptic orthogonal grating stimuli. We found that after several seconds of monocular stimulation with an oriented grating, an orthogonal stimulus to the other eye evoked a reversal of the cortical response pattern, which may contribute to flash suppression in perception. Furthermore, after several seconds of rival binocular stimulation with unequal contrasts, transient increase in the contrast of the weak stimulus evoked a long-lasting cortical response. This transient-triggered response could contribute to the perceptual switch during binocular rivalry. Together, these results point to a significant contribution of early visual cortex to transient-triggered switch in perceptual dominance.  相似文献   

17.
Stanley J  Carter O  Forte J 《PloS one》2011,6(5):e18978
When an observer is presented with dissimilar images to the right and left eye, the images will alternate every few seconds in a phenomenon known as binocular rivalry. During sustained viewing, the timing of these switches appears to be unpredictable. Recent research has suggested that the initial 'onset' period of rivalry is not random and may be different in its neural mechanism than subsequent dominance periods. It is known that differences in luminance and contrast have a significant influence on the average dominance during sustained rivalry and that perception of luminance can vary between individuals and across the visual field. We therefore investigated whether perception of luminance contrast plays a role in onset rivalry. Observers viewed rival targets of equal brightness for brief presentations in eight locations of the near periphery and reported the color that was first dominant in each location. Results show that minimizing differences in brightness and contrast yields a stronger pattern of onset dominance bias and reveals evidence of monocular dominance. The results suggest that both contrast and monocular dominance play a role in onset dominance, though neither can fully explain the effect.  相似文献   

18.
A fresh look at the temporal dynamics of binocular rivalry   总被引:3,自引:0,他引:3  
Human observers viewed dichoptic orthogonal sine-wave gratings and indicated when exclusive visibility occurred in either eye. Contrast was held constant in one eye and was increased or decreased in the other eye for a number of alternation cycles (continuous presentation) or for only the duration of a single period of exclusive visibility (synchronous presentation). The synchronous presentation condition allowed us to identify the differing effects of contrast during the suppressed and during the dominant periods. Mixed phases were recorded as distinct from suppressed and dominant phases, and new classifications of compound-dominant and compound-suppressed phases are defined. The results indicate that binocular rivalry responds to stimulus contrast in two ways. 1) The duty-cycle of dominance and suppression is determined by the relative image contrast between the two eyes, with dominance of the higher contrast image being favored, and 2) the overall rate of alternation is driven by monocular image contrast during the suppressed phase (increased monocular contrast increases the alternation rate) and to a lesser extent by monocular contrast during the dominant phase (increased monocular contrast decreases the rate). A model is developed to reflect these ideas. These results support a reciprocal inhibition oscillator as the underlying mechanism of binocular rivalry.  相似文献   

19.
The human visual system (HVS) plays an important role in stereo image quality perception. Therefore, it has aroused many people’s interest in how to take advantage of the knowledge of the visual perception in image quality assessment models. This paper proposes a full-reference metric for quality assessment of stereoscopic images based on the binocular difference channel and binocular summation channel. For a stereo pair, the binocular summation map and binocular difference map are computed first by adding and subtracting the left image and right image. Then the binocular summation is decoupled into two parts, namely additive impairments and detail losses. The quality of binocular summation is obtained as the adaptive combination of the quality of detail losses and additive impairments. The quality of binocular summation is computed by using the Contrast Sensitivity Function (CSF) and weighted multi-scale (MS-SSIM). Finally, the quality of binocular summation and binocular difference is integrated into an overall quality index. The experimental results indicate that compared with existing metrics, the proposed metric is highly consistent with the subjective quality assessment and is a robust measure. The result have also indirectly proved hypothesis of the existence of binocular summation and binocular difference channels.  相似文献   

20.
During binocular rivalry, perception alternates between two different images presented one to each eye. At any moment, one image is visible, dominant, while the other is invisible, suppressed. Alternations in perception during rivalry could involve competition between eyes, eye-rivalry, or between images, image-rivalry, or both. We measured response criteria, sensitivities, and thresholds to brief contrast increments to one of the rival stimuli in conventional rivalry displays and in a display in which the rival stimuli swapped between the eyes every 333 ms–swap rivalry–that necessarily involves image rivalry. We compared the sensitivity and threshold measures in dominance and suppression to assess the strength of suppression. We found that response criteria are essentially the same during dominance and suppression for the two sorts of rivalry. Critically, we found that swap-rivalry suppression is weak after a swap and strengthens throughout the swap interval. We propose that image rivalry is responsible for weak initial suppression immediately after a swap and that eye rivalry is responsible for the stronger suppression that comes later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号