首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

2.
The developing ovaries of S. quercus contain a limited number of oogonial cells which undergo a series of incomplete mitotic divisions resulting in the formation of clusters of cystocytes. Ovaries of viviparous generations contain 6 to 9 clusters, containing 32 cystocytes each, whereas ovaries of oviparous generations contain 5 clusters containing 45-60 cystocytes. During further development, clusters become surrounded by a single layer of follicular cells, and within each cluster the cystocytes differentiate into oocytes and trophocytes (nurse cells). Concurrently, cysts transform into ovarioles. The anterior part of the ovariole containing the trophocytes becomes the tropharium, whereas its posterior part containing oocytes transforms into the vitellarium. The vitellaria of viviparous females are composed of one or two oocytes, which develop until previtellogenesis. The nuclei of previtellogenic oocytes enter cycles of mitotic divisions which lead to the formation of the embryo. Ovarioles of oviparous females contain a single oocyte which develops through three stages: previtellogenesis, vitellogenesis and choriogenesis. The ovaries are accompanied by large cells termed bacteriocytes which harbor endosymbiotic microorganisms.  相似文献   

3.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

4.
Ovaries of phylloxerids consist of short telotrophic ovarioles. Ovaries of wingless morphs contain four ovarioles whereas those of winged morphs contain one or two ovarioles. The individual ovariole of the adult female is differentiated into a terminal filament, trophic chamber (tropharium), vitellarium and short ovariole stalk (pedicel). The number of germ cells constituting ovarioles is not stable and ranges between 49 and 64. The tropharia enclose individual trophocytes and arrested oocytes. The vitellaria contain usually two oocytes, which develop through three stages: previtellogenesis, vitellogenesis and choriogenesis. Endosymbiotic microorganisms do not occur in the germ cells. In the light of the obtained results, the phylogenetic relationships between aphid families are discussed.  相似文献   

5.
Developing ovaries of scale insects (Hemiptera : Coccinea) Nipaecoccus nipae (Pseudococcidae) and Cryptococcus fagisuga (Cryptococcidae) contain clusters of interconnected cells (cystocytes) that are arranged into rosettes; polyfusomes occur in the centres of the rosettes. Ovaries of the investigated adult scale insects are composed of numerous short telotrophic ovarioles. Tropharia (trophic chambers) of Dysmicoccus newsteadi (Pseudococcidae), Eriococcus buxi (Eriococcidae), Cryptococcus fagisuga and Pseudochermes fraxini (Cryptococcidae) comprise only trophocytes (nurse cells), whereas those of Kermes quercus (Kermesidae) and Gossyparia spuria (Eriococcidae) also contain arrested oocytes. The latter probably degenerate. It is suggested that during evolution of scale insects a gradual reduction of germ cells to 4 per cluster (3 trophocytes and 1 oocyte) took place. In light of the obtained results, anagenesis of scale insects ovarioles is discussed.  相似文献   

6.
The ovaries of Orthezia urticae and Newsteadia floccosa are paired and composed of numerous short ovarioles. Each ovariole consists of an anterior trophic chamber and a posterior vitellarium that contains one developing oocyte. The trophic chamber contains large nurse cells (trophocytes) and arrested oocytes. The total number of germ cells per ovariole (i.e., cluster) is variable, but it is always higher than 32 and less than 64. This suggests that five successive mitotic cycles of a cystoblast plus additional divisions of individual cells are responsible for the generation of the cluster. Cells of the trophic chamber maintain contact with the oocyte via a relatively broad nutritive cord. The trophic chamber and oocyte are surrounded by somatic cells that constitute the inner epithelial sheath around the former and the follicular epithelium around the latter. Anagenesis of hemipteran ovarioles is discussed in relation to the findings presented. © 1995 Wiley-Liss, Inc.  相似文献   

7.
The ovaries of aphids belonging to the families Eriosomatidae, Anoeciidae, Drepanosiphidae, Thelaxidae, Aphididae, and Lachnidae were examined at the ultrastructural level. The ovaries of these aphids are composed of several telotrophic ovarioles. The individual ovariole is differentiated into a terminal filament, tropharium, vitellarium, and pedicel (ovariolar stalk). Terminal filaments of all ovarioles join together into the suspensory ligament, which attaches the ovary to the lobe of the fat body. The tropharium houses individual trophocytes and early previtellogenic oocytes termed arrested oocytes. Trophocytes are connected with the central part of the tropharium, the trophic core, by means of broad cytoplasmic processes. One or more oocytes develop in the vitellarium. Oocytes are surrounded by a single layer of follicular cells, which do not diversify into distinct subpopulations. The general organization of the ovaries in oviparous females is similar to that of the ovaries in viviparous females, but there are significant differences in their functioning: (1) in viviparous females, all ovarioles develop, whereas in oviparous females, some of them degenerate; (2) the number of germ cells per ovariole is usually greater in females of the oviparous generation than in females of viviparous generations; (3) in oviparous females, oocytes in the vitellarium develop through three stages (previtellogenesis, vitellogenesis, and choriogenesis), whereas in viviparous females, the development of oocytes stops after previtellogenesis; and (4) in the oocyte cytoplasm of oviparous females, lipid droplets and yolk granules accumulate, whereas in viviparous females, oocytes accrue only lipid droplets. Our results indicate that a large number of germ cells per ovariole represent the ancestral state within aphids. This trait may be helpful in inferring the phylogeny of Aphidoidea.  相似文献   

8.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

9.
Szklarzewicz, T., Kalandyk‐Kolodziejczyk, M., Kot, M. and Michalik, A. 2011. Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera, Coccomorpha: Marchalinidae). —Acta Zoologica (Stockholm) 00 :1–9. The paired ovaries of Marchalina hellenica are composed of about 200 ovarioles of telotrophic type. In each ovariole, a trophic chamber, vitellarium and ovariolar stalk can be distinguished. The tropharia comprise trophocytes and early previtellogenic oocytes (termed arrested oocytes) or trophocytes only. The arrested oocytes are not capable of further development. In the vitellaria, single oocytes develop that are connected to the tropharium by means of broad nutritive cords. The number of germ cells (trophocytes and oocytes) constituting ovarioles is not constant and may range between 25 and 32. Numerous endosymbiotic bacteria occur in the cytoplasm of trophocytes. The endosymbionts are transported via nutritive cords to the developing oocyte. The obtained results are discussed in a phylogenetic context.  相似文献   

10.
The ultra- and microstructure of the female reproductive system of Matsucoccus matsumurae was studied using light microscopy, scanning and transmission electron microscopy. The results revealed that the female reproductive system of M. matsumurae is composed of a pair of ovaries, a common oviduct, a pair of lateral oviducts, a spermatheca and two pairs of accessory glands. Each ovary is composed of approximately 50 telotrophic ovarioles that are devoid of terminal filaments. Each ovariole is subdivided into an apical tropharium, a vitellarium and a short pedicel connected to a lateral oviduct. The tropharium contains 8–10 trophocytes and two early previtellogenic oocytes termed arrested oocytes. The trophocytes degenerate after egg maturation, and the arrested oocytes are capable of further development. The vitellarium contains 3–6 oocytes of different developmental stages: previtellogenesis, vitellogenesis and choriogenesis. The surface of the vitellarium is rough and composed of a pattern of polygonal reticular formations with a center protuberance. The oocyte possesses numerous yolk spheres and lipid droplets, and is surrounded by a mono-layered follicular epithelium that becomes binucleate at the beginning of vitellogenesis. Accessory nuclei are observed in the peripheral ooplasm during vitellogenesis.  相似文献   

11.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

12.
Piscicola has a pair of elongated sac-shaped ovaries. Inside the ovaries are numerous small somatic cells and regularly spherical egg follicles. Each follicle is composed of three types of cells: many (average 30) germ cells (cystocytes) interconnected by intercellular bridges in clones (cysts), one intermediate cell, and three to five outer follicle cells (envelope cells). Each germ cell in a clone has one intercellular bridge connecting it to the central anucleate cytoplasmic mass, the cytophore. Each cluster of germ cells is completely embedded inside a single huge somatic follicle cell, the intermediate (interstitial) cell. The most spectacular feature of the intermediate cell is its development of a system of intracytoplasmic canals apparently formed of invaginations of its cell membrane. Initially the complex of germ cell cluster + intermediate cell is enclosed within an envelope composed of squamous cells. As oogenesis progresses the envelope cells gradually degenerate. All the germ cells that have terminated their mitotic divisions are of similar size and enter meiotic prophase, but one of the cystocytes promptly starts to grow faster and differentiates into the oocyte, whereas the remaining cystocytes withdraw from meiosis and become nurse cells (trophocytes). Numerous mitochondria, ER, and a vast amount of ribosomes are transferred from the trophocytes via the cytophore toward the oocyte. Eventually the oocyte ingests all the content of the cytophore, and the trophocytes degenerate. Little vitellogenesis takes place; the oocyte gathers nutrients in the form of small lipid droplets. At the end of oogenesis, an electron-dense fibrous vitelline envelope appears around the oocyte, among short microvilli. At the same time, electron-dense cortical granules occur in the oocyte cortical cytoplasm; at the end of oogenesis they are numerous, but after fertilization they disappear from the ooplasm. In the present article we point out many differences in the course of oogenesis in two related families of rhynchobdellids: piscicolids and glossiphoniids.  相似文献   

13.
Two entirely different types of ovaries (ovarioles) have been described in mecopterans. In the representatives of Meropeidae, Bittacidae, Panorpodidae and Panorpidae the ovarioles are of the polytrophic-meroistic type. Four regions: a terminal filament, germarium, vitellarium and ovariole stalk can be distinguished in the ovarioles. The germaria house numerous germ cell clusters. Each cluster arises as a result of 2 consecutive mitoses of a cystoblast and consists of 4 sibling cells. The oocyte always differentiates from one of the central cells of the cluster, whereas the remaining 3 cells develop into large, polyploid nurse cells. The vitellaria contain 7-12 growing egg chambers (= oocyte-nurse cell complexes). In contrast, the ovaries of the snow flea, Boreus hyemalis, are devoid of nurse cells and therefore panoistic (secondary panoistic). The ovarioles are composed of terminal filaments, vitellaria and ovariole stalks only; in adult females functional germaria are absent. Histochemical tests suggest that amplification of rDNA takes place in the oocyte nuclei. Resulting dense nucleolar masses undergo fragmentation into multiple polymorphic nucleoli. The classification of extant mecopterans as well as the phylogenetic relationships between Mecoptera and Siphonaptera are discussed in the context of presented data.  相似文献   

14.
Three different ovariole types exist in insects: panoistic, polytrophic- and telotrophic-meroistic. Their ontogenetic development is comparable to all insect orders. Each ovariole is composed of somatic tissues and germ cells.Panoistic ovarioles can be developed: (1) by totally blocking germ cell cluster division (e.g. in “primitive” insect orders; and (2) after germ cell cluster formation by final cleavage of cystocytes, which develop as oocytes (e.g. in stoneflies or thrips).Polytrophic-meroistic ovaries, showing a set of identical characters, are found among hemirnetabolous and holometabolous insects, indicating a “basic type” of common origin. One characteristic feature is the differentiation of only one oocyte, which is derived from one central cell of the cluster, whereas all other siblings are transformed into nurse cells.Telotrophic ovaries differ from polytrophic ovaries by retention of all nurse cells in the anterior trophic chamber. In addition, oocyte-nurse cell determination can be shifted towards more oocytes in a cluster, and clusters or subclusters can fuse by cell membrane reduction among nurse cells. This type of ovary developed independently 3 times from polytrophic ancestors and once in mayflies directly from panoistic ancestors.  相似文献   

15.
The paired ovaries of Steingelia gorodetskia are composed of about 100 telotrophic ovarioles devoid of terminal filaments (scale insect autapomorphy). In structure they resemble those of other scale insects, but differ in the following details: (a) all ovarioles develop synchronously, (b) they are suspended to the lateral oviducts by means of long stalks, (c) the tropharium is tubular (unique in scale insects) and (d) consists of 15-35, trophocytes, 2-4 previtellogenic oocytes that further develop, and numerous somatic prefollicular cells, (e) the vitellarium houses 2-4 linearly arranged vitellarial oocytes (versus one in most scale insects). Most of these features must be considered as plesiomorphic corresponding with the conditions in the most primitive Heteroptera. Bacterial endosymbionts have been found in some somatic cells, trophocytes, oocytes and in the nutritive cord. Present results support the opinion, based on external morphology, that the Steingeliidae are closely related to the Ortheziidae, Xylococcidae and Matsucoccidae.  相似文献   

16.
The structure of aphid ovaries, including ovipare and virginopare morphs of five species, was investigated by light and electron microscopy. Aphids contain telotrophic meroistic ovarioles. The amount and distribution of cytoplasmic components of nurse cells, nutritive cords, and young oocytes are nearly identical to those known from scale insects and heteropterans. Each ovariole has a constant number of nurse cells and oocytes. In ovaries of ovipare morphs, the nurse cell nuclei enlarge by endomitosis (n = 28n?210n), whereas in virginopare morphs the nurse cell nuclei remain small (n = 22n?24n). Furthermore, in virginoparae the previtellogenic growth of oocytes is highly reduced, and vitellogenesis and chorionogenesis are blocked totally. Embryogenesis starts immediately after the shortened previtellogenic growth. In each ovariole, all germ cell descendants belong to one germ cell cluster that follows the 2n rule. The cluster normally contains 25 = (32) cells, but other mostly smaller numbers also occur. In contrast to polytrophic meroistic ovarioles, more than one cell of each cluster will develop into an oocyte. In Drepanosiphum platanoides, 16 (2n?1) nurse cells and 16 (2n?1) oocytes exist in each cluster, whereas, in Metopolophium dirhodum, 8 (2n?2) oocytes and 24 (2n?1 + 2n?2) nurse cells are normally found. In many ovarioles of Macrosiphum rosae, 21 nurse cells nourish 11 oocytes. Models of germ cell cluster formation in aphid ovaries are discussed.  相似文献   

17.
The ovaries of Mutilla sp., as those of other hymenopterans, consist of meroistic-polytrophic ovarioles. Within each ovariole, a terminal filament, a germarium, and a vitellarium can be distinguished. The germaria contain numerous dividing and/or differentiating groups (clusters) of germ cells. The vitellaria are composed of several, linearly arranged, ovarian follicles; each follicle consists of an oocyte and a group of nurse cells. Distribution of cytoskeletal elements (microfilaments and microtubules) throughout the ovarioles of Mutilla sp. has been studied on whole mount preparations stained with rhodamine-conjugated phalloidin and FITC-labelled anti-tubulin.  相似文献   

18.
The ovaries of the common wasp, Vespula germanica are polytrophic-meroistic and consist of 2-3 (workers) or 7 (queens) ovarioles. The ovarioles are differentiated into three regions: a terminal filament, a germarium, and a vitellarium. The germaria of both castes consist of two zones: an anterior zone of germ-cell cluster formation and a posterior one of germ-cell cluster differentiation. The vitellaria comprise 4-6 (workers) or 7-10 (queens) ovarian follicles (egg chambers). Each chamber consists of an oocyte and about 60 isodiametric nurse cells (trophocytes). The egg chambers have been arbitrarily classified into four developmental categories: early and late previtellogenic, vitellogenic, and choriogenic. The process of oogenesis in workers proceeds only up to the onset of the late previtellogenesis. Neither vitellogenic nor choriogenic egg chambers were observed in this caste. During early and late previtellogenesis the envelope of the oocyte nucleus proliferates and becomes highly folded. This process leads to the formation of characteristic organelles, termed accessory nuclei (AN). Although AN arise in the oocytes of both queens and workers, their number in the latter caste is always considerably lower. At the onset of the late previtellogenesis AN start to migrate towards the periphery of the oocyte where they reside till the end of oogenesis. The physiological state of the worker ovaries is discussed in the light of the presented results.  相似文献   

19.
Coccoids (Coccinea, Coccoidea, Coccomorpha, scale insects, scales) are a highly diverse group of ectoparasitic insects. They comprise 2 subgroups: primitive archaeococcoids (= Orthezioidea sensu Koteja) and advanced neococcoids (= Coccoidea sensu Koteja). The ovaries of coccoids consist of numerous short telotrophic-meroistic ovarioles. The ovarioles of all investigated species share common characters (e.g. the same mechanism of ovariole development, lack of terminal filaments, occurrence of single oocytes in the vitellaria) supporting the concept of monophyletic origin of this group. Despite these characteristics, the ovaries of archaeococcoids and neococcoids differ in the number of germ cells (oocytes + trophocytes) constituting a single ovariole. In primitive families (Ortheziidae, Margarodidae), this number is relatively large (15-58), whereas in advanced ones (Pseudococcidae, Kermesidae, Eriococcidae, Cryptococcidae, Coccidae, Diaspididae) it is small and usually does not exceed 8. The comparative analysis of the ovary structure in the representatives of Coccinea and closely related Aphidinea (aphids) has revealed that: (1) the organization of archaeococcoid ovaries is more similar to those of aphids than to neococcoids and (2) during the evolution of Coccinea a gradual reduction in the number of germ cells in ovarioles took place.  相似文献   

20.
The telotrophic ovary of Epilachna vigintioctopunctata is composed of 32-40 ovarioles, each with an apical germarium and a basal vitellarium. The germarium encloses mononucleate and binucleate trophocytes, prefollicular tissue and oogonia, while the vitellarium contains 2-5 oocytes arranged in order of maturity. Definite nutritive cords are absent. When females are exposed to 75 mg 4,4,6-trimethyl-1h, 4H-pyrimidine-2-thiol by contact, the trophocytes and the follicular epithelial cells disintegrate to form dark-staining clumps and thus fail to supply nourishment to the developing oocytes, which consequently remain yolk-less and are ultimately reduced to shrunken masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号