首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The genetic heterogeneity of human pancreatic alpha-amylase (alpha-1,4-glucan 4-glucanohydrolase, E.C. 3.2.1.1) has been better defined through the development of an asparagine buffered electrophoretic gel system. Three alleles had been identified for the pancreatic amylase locus, AMY2, with two variant alleles as autosomal dominant traits on Tris HCl buffered sheet gels. The asparagine buffered sheet gel now allows the differentiation of the genotypes AMY2B/AMY2B,AMY2B/AMY2A, and AMY2B/AMY2C, thus classifying these three alleles as codominants. Asparagine buffered polyacrylamide gels and thin layer polyacrylamide isoelectric focusing aided in the identification of three new pancreatic amylase variants: AMY2D,AMY2E, and AMY2F. AMY2E has been identified only in AMY2B and AMY2E individuals. This allele is proposed as a quantitative activity variant with essentially the same electrophoretic mobility as AMY2A. The other new autosomal variants have each been identified in single white families. AMY2D is dominant and AMY2F is a codominant trait as shown on thin layer polyacrylamide isoelectric focusing gels.  相似文献   

2.
This paper presents the first data in the alpha-amylase isoenzymes in primates of the families: Lemuridae, Cebidae, Cercopithecidae, Hylobatidae and Pongidae. By means of agar-gel electrophoresis of urine samples from 33 individuals belonging to ten species of the above mentioned families a total of 14 different variants of amylase heterogeneity were found.  相似文献   

3.
Summary The polymorphic patterns of human salivary amylase of a large number of individuals of Caucasian origin were determined by using isoelectric focusing and polyacrylamide gel electrophoresis. Nine different salivary amylase protein variants were found; three of them are recorded for the first time and their heredity is shown. Some of the variants are encoded by haplotypes expressing three allozymes. Most variants display low frequencies. Analysis of the relative intensities of variant-specific isozyme bands, combined with segregation analysis, show that extensive quantitative variation is present in the population. The numbers of salivary amylase genes in some families showing quantitative variation at the protein level have been estimated by the polymerase chain reaction. We present evidence that quantitative variations in amylase protein patterns do not always reflect variations in gene copy number but that other mechanisms are also involved.  相似文献   

4.
To examine further a previously reported association between amylase gene polymorphism and growth in the Pacific oyster Crassostrea gigas, ecophysiological parameters and biochemical and molecular expression levels of alpha-amylase were studied in Pacific oysters of different amylase genotypes. Genotypes that previously displayed significantly different growth were found to be significantly different for ingestion and absorption efficiency. These estimated parameters, used in a dynamic energy budget model, showed that observed ingestion rates (unlike absorption efficiencies) allowed an accurate prediction of growth potential in these genotypes. The observed association between growth and amylase gene polymorphism is therefore more likely to be related to ingestion than to absorption efficiency. Additionally, relative mRNA levels of the two amylase cDNAs were also strongly associated with amylase gene polymorphism, possibly reflecting variation in an undefined regulatory region, although no corresponding variation was observed in specific amylase activity. Amylase gene sequences were determined for each genotype, showing the existence of only synonymous or functionally equivalent non-synonymous polymorphisms. The observed associations among growth, food consumption-related traits and amylase gene polymorphism are therefore more likely to be related to variation in the level of amylase gene expression than to functional enzymatic variants.  相似文献   

5.
Salivary and pancreatic amylases from the mouse show both structural and quantitative genetic variation encoded within a gene complex on chromosome 3. Two fundamental questions prompted by this variation are whether salivary and pancreatic amylases are derived from different structural genes and whether multiple structural genes are causing the quantitative variation observed in each of the two amylases. These questions were approached by comparing the amylase protein from 12 congenic lines carrying amylase gene complexes derived from different origins. The amylases were purified by affinity chromatography employing the inhibitor cyclohepta-amylose and characterized in terms of amino acid composition, specific activity, molecular weight, and heat stability. They were analyzed by native electrophoresis in polyacrylamide gels and by peptide mapping employing both cyanogen bromide cleavage and restricted proteolysis in the presence of dodecylsulfate. By these techniques, many differences in the structure of pancreatic amylase that were not reflected in the salivary amylase were found among mouse strains. Likewise, a distinct salivary amylase variant was found. These results suggest that independent structural genes exist for the two amylases. Furthermore, by all criteria used, pancreatic amylase from single strains exhibits molecular heterogeneity, whereas heterogeneity was never found for salivary amylase. We conclude that at least four structural genes code for pancreatic amylase while only a single gene, different from any of the pancreatic genes, codes for salivary amylase.This work was supported by grants from the Danish Natural Science Research Council and a grant from the United States Public Health Service (Grant GM-19521). Part of the study was made during a 1-month visit of A. J. L. in Aarhus, which was supported by grants from NATO and the University of Aarhus.  相似文献   

6.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

7.
Modern genetic mapping is plagued by the “missing heritability” problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS) implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.  相似文献   

8.
The human CD44 cell-surface glycoprotein participates in a wide variety of cell-cell interactions including lymphocyte homing and tumor metastasis. The CD44 antigen is known to display extensive size heterogeneity when compared between different tissue sources although the structural basis for this variation is not yet clear. Recently, two further isotypes in addition to the basic hemopoietic form of the CD44 antigen have been cloned and sequenced and these have been found to contain all or part of a 200-400-base pair insert within the extracellular domain, suggesting that the characteristic heterogeneity in the molecule may be generated by a mechanism of alternative splicing. We have obtained further evidence for alternative splicing, and we report here the cloning and sequencing of six different CD44 sequence variants from a variety of cell lines using a combination of expression cloning and the polymerase chain reaction. Comparison of these variants indicates that each is probably assembled by the insertion of five different exon units in tandem into a discrete site within the membrane proximal region of the extracellular domain. One of the variants contains an exon that shares extensive amino acid sequence homology with a recently described rat CD44 variant that mediates tumor metastasis. Another variant contains a new exon that encodes a tandem repeat of the consensus sequence SG for covalent modification with chondroitin sulfate and is expressed predominantly on mammary tumors. We suggest that a mechanism of alternative exon splicing generates much of the observed structural heterogeneity of CD44 and that the particular set of CD44 variants expressed in a single cell may represent a precise postal code directing the final destination of migrating cells and metastatic tumors.  相似文献   

9.
The inheritance of salivary amylase variants in the deer mouse, Peromyscus maniculatus, is controlled by codominant alleles, Amy-1a, Amy-1b, and Amy-1c, at a single autosomal locus. Pancreatic amylases were invariant and unaffected by salivary amylase genotypes. Salivary amylase zymograms of five myomorphic rodents are compared and evolutionary implications are discussed.  相似文献   

10.
PKC is known to be activated by pancreatic secretagogues such as CCK and carbachol and to participate along with calcium in amylase release. Four PKC isoforms, alpha, delta, epsilon, and zeta, have been identified in acinar cells, but which isoforms participate in amylase release are unknown. To identify the responsible isoforms, we used translocation assays, chemical inhibitors, and overexpression of individual isoforms and their dominant-negative variants by means of adenoviral vectors. CCK stimulation caused translocation of PKC-alpha, -delta, and -epsilon, but not -zeta from soluble to membrane fraction. CCK-induced amylase release was inhibited approximately 30% by GF109203X, a broad spectrum PKC inhibitor, and by rottlerin, a PKC-delta inhibitor, but not by G?6976, a PKC-alpha inhibitor, at concentrations from 1 to 5 microM. Neither overexpression of wild-type or dominant-negative PKC-alpha affected CCK-induced amylase release. Overexpression of PKC-delta and -epsilon enhanced amylase release, whereas only dominant-negative PKC-delta inhibited amylase release by 25%. PKC-delta overexpression increased amylase release at all concentrations of CCK, but dominant-negative PKC-delta only inhibited the maximal concentration; both similarly affected carbachol and JMV-180-induced amylase release. Overexpression of both PKC-delta and its dominant-negative variant affected the late but not the early phase of amylase release. GF109203X totally blocked the enhancement of amylase release by PKC-delta but had no further effect in the presence of dominant-negative PKC-delta. These results indicate that PKC-delta is the PKC isoform involved with amylase secretion.  相似文献   

11.
Methods for the copurification and rapid assessment of the protein profiles corresponding to the multiple variants of bovine aortic lysyl oxidase are described. The individual variants do not resolve from each other by electrophoresis in sodium dodecyl sulfate but are resolved by gel electrophoresis in 8 M urea, thus providing a new method for their detection independent of enzyme assay. Alkylation of the purified mixture of the variants with iodoacetamide after reduction with dithiothreitol identified three disulfides per 32,000-Da monomer. Urea gel electrophoresis revealed that the heterogeneity of lysyl oxidase persists after reduction and alkylation, indicating that disulfide isomers are not the bases of the enzyme heterogeneity.  相似文献   

12.
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels.  相似文献   

13.
Restriction maps were made by Southern blot analysis of the Amy (alpha-amylase) region in 7 strains of D. melanogaster using endonucleases SalI, XhoI and EcoRI. These were compared to the map of lambda Dm65 which contains the cloned Amy region. Strains used produce either two amylase variants, a single variant, or no amylase, yet all 7 strains carry two Amy genes as inverted repeats at the Amy locus. This and the orientation of the repeats resembles the situation in lambda Dm65. Most restriction sites mapped are conserved but two strains contain a large insertion which differs in size and position between strains. A complex anomaly, probably an inversion, exists at the Amy locus in a null strain. Maps for our Amy1,3 strain and the lambda Dm65 clone are identical, the DNA of each having been derived from a Canton-S wild stock. Restriction and genetic maps of the Amy region were aligned and alleles assigned to the proximal and distal genes, Amy-p and Amy-d.  相似文献   

14.
Prigent S  Renard E  Cariou ML 《Genetica》2003,119(2):133-145
Understanding the significance of electrophoretic variation is of interest for both ecological and evolutionary genetics. Although there has been a very active neutralist–selectionist debate about the patterns of electrophoretic variation in natural populations, it is only recently that charged amino acids have been shown to be important in enzyme adaptation. In this study we carried out a broad electrophoretic survey of amylase variation in 150 species of Drosophilids. The distribution of amylase electromorphs was found to be correlated with the geographical origin of the flies. Generally the faster migrating variants are found in warmer temperatures. There is also a correlation with the feeding habits of the species, in particular, fungus feeders consistently showed a deviating pattern of electrophoretic mobility. These correlations between ecological diversity and electrophoretic patterns indicate that at least some of the changes in charged amino acids are adaptive, and result from selection to cope with specific environments.  相似文献   

15.
A set of 12 Escherichia coli suppressor tRNAs, inserting different amino acids in response to an amber codon, has been used to create rapidly numerous protein variants of a thermostable amylase; by site-directed mutagenesis, amber mutations were first introduced into Bacillus licheniformis alpha-amylase gene at position His35, His133, His247, His293, His406, or His450; genes carrying one or two amber mutations were then expressed in the different suppressor strains, generating over 100 amylase variants with predicted amino acid changes that could be tested for thermostability. Within the detection limits of the assays, amino acid replacements at five histidine positions had no significant effect. In contrast, suppressed variants substituted at residue His133 clearly exhibited modified thermostability and could be either less stable or more stable than the wild-type amylase, depending on the amino acid inserted at this position; comparison of the variants indicates that the hydrophobicity of the substituting residue is an important but not a determinant factor of stabilization. The effect of the most stabilizing and destabilizing amino acid substitutions, His133 to Tyr and to Pro, respectively, were confirmed by introducing the corresponding missense mutations into the gene sequence. The advantages and limits of informational suppression in protein stability studies are discussed as well as structural features involved in the thermostability of B. licheniformis alpha-amylase.  相似文献   

16.
Currently there are several dozen human polymorphisms that have been loosely associated with cancer risk. Correlating such variants with cancer risk has been challenging, primarily due to factors such as genetic heterogeneity, contributions of diet and environmental factors, and the difficulty in obtaining large sample sizes for analysis. Such difficulties can be circumvented with the establishment of mouse models for human variants. Recently, several groups have modeled human cancer susceptibility polymorphisms in the mouse. Remarkably, in each case these mouse models have accurately reflected human phenotypes, and clarified the contribution of these variants to cancer risk. We recently reported on a mouse model for the codon 72 polymorphism in p53, and found that this polymorphism regulates the ability to cooperate with NF-kB and induce apoptosis. Here-in we present evidence that this polymorphism impacts the apoptotic function of p53 in a tissue-specific manner; such tissue-specific effects of polymorphic variants represent an added challenge to human cancer risk association studies. The data presented here support the premise that modeling human polymorphisms in the mouse represents a powerful tool to assess the impact of these variants on cancer risk, progression and therapy.  相似文献   

17.
Powell JR  Amato GD 《Genetics》1984,106(4):625-629
Frequency changes in amylase allozymes and patterns of tissue-specific expression of amylase have been monitored in laboratory populations of Drosophila pseudoobscura maintained on media in which the only carbohydrate source was maltose or starch. Nonrandom changes occurred in patterns of expression, whereas no patterns in allozyme frequency changes were discernible. The nature of the pattern changes was similar to an identical study done on populations derived from a natural population several hundred miles from the population used in the present experiments. However, in the previous study nonrandom changes in allozyme frequencies were also noted. Evidently, selection on the Drosophila amylase system differs depending upon the genetic background of the population. Furthermore, the evolutionary dynamics of structural gene variants and those regions controlling its expression may be independent, a result consistent with DNA sequence data.  相似文献   

18.
J. V. Jacobsen  R. B. Knox 《Planta》1973,112(3):213-224
Summary Gibberellic-acid(GA3)-induced -amylase has been localised in barley aleurone layers using cytochemical methods and light microscopy. Evidence obtained from the use of a starch substrate film method as well as immunofluorescence indicated that the first amylase to appear in the cell was associated with aleurone grains, apparently with the outer membrane, and also with the peripheral cytoplasm. In GA3-treated tissue, the amylase distribution was much more diffuse, although patchy, throughout the cytoplasm and it tended to accumulate in the endosperm side of the cell. The possibility that the aleurone grain membrane is the site of gibberellin-induced enzyme synthesis and that it proliferates to become rough endoplasmic reticulum is considered. Immunological information was obtained which supports earlier indications that induced -amylase consists of two different proteins, each with molecular heterogeneity.  相似文献   

19.
20.
Structural variation in the primary structure of human T200 glycoprotein has been detected. Three cDNA variants have been characterized each of which encode T200 molecules that differ in size as a result of sequence differences in their amino-terminal regions. The largest form of the molecule is distinguished from the smallest by an insert of 161 amino acids, after the first eight amino-terminal residues. The other variant has an insert at the same location of 47 amino acids identical to residues 75-121 in the larger insert. Both extra domains are rich in serine and threonine residues and are likely to display multiple O-linked oligosaccharides. These structural variants which probably arise by cell-type-specific alternative splicing provide a molecular basis for the previously observed structural and antigenic heterogeneity of T200 glycoprotein. In addition to the variable amino-terminal region, the external domain of human T200 glycoprotein consists of a second cysteine-rich region of about 400 amino acids, a single transmembrane-spanning region and a large cytoplasmic domain of 707 amino acids shared by all of the structural variants and highly conserved between species. The gene encoding human T200 is located on the long arm of chromosome 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号