首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Indirect interactions among species can strongly influence population dynamics and community structure but are often overlooked in management of large mammals. We estimated survival of Dall's sheep (Ovis dalli) in the central Alaska Range, USA, during years of differing snowshoe hare (Lepus americanus) abundance to test whether indirect interactions with a cyclic hare population affect Dall's sheep either negatively, by subsidizing predators (apparent competition), or positively, by diverting predation (apparent commensalism). Annual survival of adult female sheep was consistently high (0.85 for all yr and age classes combined). In contrast, annual estimates of lamb survival ranged from 0.15 to 0.63. The main predators of lambs were coyotes (Canis latrans) and golden eagles (Aquila chrysaetos), which rely on hares as their primary food and prey on lambs secondarily. Coyotes and eagles killed 78% of 65 radiocollared lambs for which cause of death was known. Lamb survival was negatively related to hare abundance during the previous year, and lamb survival rates more than doubled when hare abundance declined, supporting the hypothesis of predator-mediated apparent competition between hares and sheep. However, stage-specific predation and delays in predator responses to changes in hare numbers led to a positive relationship between abundance of adult Dall's sheep and hares. Lacking reliable estimates of survival, a manager might erroneously conclude that hares benefit sheep. Thus, support for different indirect effects can be obtained from different types of data, which demonstrates the need to determine the mechanisms that create indirect interactions. Long-term survey data suggest that predation by coyotes is limiting this sheep population below levels typical when coyotes were rare or absent. Understanding the nature of indirect interactions is necessary to effectively manage complex predator–prey communities.  相似文献   

2.
Management of large mammal populations has often been based on aerial minimum count surveys that are uncorrected for incomplete detection and lack estimates of precision. These limitations can be particularly problematic for Dall's sheep (Ovis dalli dalli) due to the high cost of surveys and variation in detection probability across time and space. The limitations of these methods have been recognized for some time, but previously proposed alternatives for sheep surveys proved to be too costly and logistically unfeasible in most circumstances (Udevitz et al. 2006). We assessed the potential for a combination of distance sampling surveys and a hierarchical modeling approach to provide a more efficient means for estimating Dall's sheep abundance by conducting aerial contour transect surveys over all sheep habitat in Gates of the Arctic National Park and Preserve (GAAR), Alaska in 2009 and 2010. We estimated the population of Dall's sheep was 8,412 (95% CI: 6,517–11,090) and 10,072 (95% CI 8,081–12,520) in 2009 and 2010, respectively. Abundance within the Itkillik Preserve area within GAAR was 1,898 (95% CI: 1,421–2,578) and 1,854 (95% CI: 1,342–2,488) in 2009 and 2010, respectively. Estimates of lamb abundance in 2010 were more than double those of 2009 after correcting for detection bias related to group size, suggesting that the apparent estimate of lambs in the population may be biased in some years depending on the degree of aggregation. Overall, the contour transect surveys were feasible logistically, cost 70–80% less than minimum count surveys, and produced precise estimates of abundance, indicating that the application of these methods could be used effectively to increase the statistical rigor and spatial extent of Dall's sheep abundance surveys throughout Alaska. These methods could be used to improve the assessment of long-term trends in populations and productivity and provide valuable information for harvest management at both local and landscape scales at reduced costs in comparison to traditional minimum count surveys. © 2011 The Wildlife Society.  相似文献   

3.
Across most of their native North American range, the horns of mountain sheep (Ovis spp.) males are getting smaller, a pattern attributed to selective hunting pressure. We measured the horns of 755 Dall's sheep males (Ovis dalli dalli) in the southern Mackenzie Mountains, Northwest Territories, between 2002 and 2017. For each male, we measured the circumference and length of each annulus for the right horn and calculated horn volume for each year. We examined changes in horn size in 4 different outfitter areas, using age at harvest as a covariate. Hunting pressure across years in the study area was consistently low, and this population did not experience the decline in horn size observed in several other mountain sheep populations in Canada. Over the 16-year period, the average horn volume of harvested males was stable and even increased in 1 outfitter area. Local management of Dall's sheep delivered independently by the guide outfitters in the Mackenzie Mountains appears to contribute to maintaining a population of males that has not been adversely affected by strong selective hunting pressure. The resilience of this management strategy may be challenged by environmental changes associated with rapid warming in northern mountain environments.  相似文献   

4.
The management and recovery of large predator populations in areas where human persecution has driven them to ecological extinction requires a solid understanding of the effects of both predation and food limitation on prey populations. We used 11 yr of data on reported losses among 17.3 million free‐ranging sheep Ovis aries in the Norwegian farming industry to elucidate the relative roles of climate, vegetation characteristics, sheep densities, lamb body mass and densities of predators and alternative prey on the number of lambs and ewes lost on summer pastures. We first examined whether predator densities predicted autumn lamb body mass through possible impacts of predators on body growth (non‐lethal effects) but found no evidence for such effects in our study system. This might be due to weak anti‐predator behavioral responses in domesticated sheep. However, autumn lamb body mass was predicted by both sheep density and winter and spring weather conditions, probably through food availability. Losses of both lambs and ewes were positively and strongly related to the density of Eurasian lynx Lynx lynx, wolverine Gulo gulo and brown bear Ursus arctos. In addition, food availability and spring weather conditions were associated to losses of lambs, while precipitation in May predicted losses of ewes. There was little evidence for interaction effects of predator species on losses, suggesting that most of the effects of the predators were additive to each other. Given the strong effect of predator densities on sheep losses, we conclude that changing livestock husbandry practices towards a system that actively protects sheep and/or active management of predator densities may be necessary to reduce sheep losses where predators are recolonizing.  相似文献   

5.
Animal responses to global climate variation might be spatially inconsistent. This may arise from spatial variation in factors limiting populations' growth or from differences in the links between global climate patterns and ecologically relevant local climate variation. For example, the North Atlantic Oscillation (NAO) has a spatially consistent relation to temperature, but inconsistent spatial relation to snow depth in Scandinavia. Furthermore, there are multiple mechanistic ways by which climate may limit animal populations, involving both direct effects through thermoregulation and indirect pathways through trophic interactions. It is conceptually appealing to directly model the predicted mechanistic links. This includes the use of climate variables mimicking such interactions, for example, to use growing degree days (GDD) as a proxy for plant growth rather than average monthly temperature. Using a unique database of autumn body mass of 83331 domestic lambs from the period 1992–2007 in four alpine ranges in Norway, we demonstrate the utility of hierarchical, mechanistic path models fitted using a Bayesian approach to analyse explicitly predicted relationships among environmental variables and between lamb body mass and the environmental variables. We found large spatial variation in strength of responses of autumn lamb body mass to the NAO, to a proxy for plant growth in spring (the Normalized Difference Vegetation Index, NDVI) and effects even differed in direction to local summer climate. Average local temperature outperformed GDD as a predictor of the NDVI, whereas the NAO index in two areas outperformed local weather variables as a predictor of lamb body mass, despite the weaker mechanistic link. Our study highlights that spatial variation in strength of herbivore responses may arise from several processes. Furthermore, mechanistically more appealing measures do not always increase predictive power due to scale of measurement and since global measures may provide more relevant “weather packages” for larger scales.  相似文献   

6.
Abstract: We investigated the dynamics of 8 populations of a bighorn sheep (Ovis canadensis) metapopulation in Hells Canyon, USA from 1997 to 2003. Pneumonia was the most common cause (43%) of adult mortality and the primary factor limiting population growth. Cougar (Puma concolor) predation was the second most-frequent source (27%) of adult mortality but did not reduce the rate of population growth significantly. Most pneumonia-caused mortality occurred in fall and early winter and most cougar predation occurred in late winter and early spring. Average annual survival of adult males (0.84) was lower than females (0.91). Pneumonia was the most common known cause of lamb mortality (86%), and pneumonia-related mortality was detected whenever summer lamb survival was <50%. Pneumonia-caused mortality rates in lambs were high from 21 days to 91 days of age and peaked at 42 days to 70 days. Summer pneumonia epizootics in lambs were independent of pneumonia-caused mortality in adults. Pneumonia-caused mortality occurred at the population level and was not synchronized geographically or temporally among populations. Although catastrophic all-age pneumonia-epizootics have previously been described in bighorn sheep, we found that chronic, although sporadic, pneumonia-caused mortality in adults and lambs can also have important effects on the dynamics of bighorn sheep populations.  相似文献   

7.
In strongly seasonal environments, the timing of birth can have important fitness consequences. We investigated which factors affect parturition date and how birthdate interacts with sex, maternal characteristics and environmental variables to affect the growth and survival of bighorn sheep (Ovis canadensis) lambs in a marked population in Alberta. Over 14 years, the estimated birthdate of 216 lambs ranged from 21 May to 18 July. Parturition date was heritable and genetically correlated with maternal mass the previous fall. Weaning a lamb delayed parturition the following year by about 7 days. Birthdate did not affect summer growth rate, but late-born lambs were lighter in mid September (the approximate time of weaning) than early-born ones. Birthdate did not affect survival to weaning, but late birth decreased survival to 1 year for male lambs. Forage quality, measured by fecal crude protein, did not affect survival to 1 year. Once we accounted for lamb mass in mid September, birthdate no longer affected the probability of survival, suggesting that late birth decreased survival by shortening a lamb's growing season. Because there was no compensatory summer growth, late-born lambs were smaller than early-born ones at the onset of winter. Our data highlight the importance of birthdate on life history traits and suggest that resource scarcity had more severe consequences for juvenile males than for females.  相似文献   

8.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

9.
Large herbivores can be directly affected by climate through effects on thermoregulation, but the strongest effects are expected to operate indirectly through plant quality and biomass. The extents to which different herbivores are affected by climate conditions in contrasting ways are poorly understood. We used an extensive dataset containing information on 38,587 lambs from the years 1992–2007. The lambs represented two breeds differing largely in digestive anatomy, diet composition and possibly other traits. The yearly average body mass values of the two breeds were strongly correlated, however, responses to climate variables nevertheless differed in strength. There were positive relationships between lamb autumn body mass and snow depth the previous winter, spring temperature and temperature and precipitation in August in both breeds. In the Norwegian white sheep (NWS) breed, there was a negative relationship between lamb autumn body mass and spring precipitation. The Spel breed exhibited similar (although weaker) relationships with climate variables. Our results show that the NWS breed might, on a short time scale, benefit most from climate warming. However, the Spel breed were less variable in body mass among years suggesting that this breed might be the better choice if the aim is to reduce uncertainty in meat production. We discuss the likely mechanisms behind the contrasting responses of the two different breeds relative to morphological, physiological and behavioural differences.  相似文献   

10.
Large herbivore populations respond strongly to remotely sensed measures of primary productivity. Whereas most studies in seasonal environments have focused on the effects of spring plant phenology on juvenile survival, recent studies demonstrated that autumn nutrition also plays a crucial role. We tested for both direct and indirect (through body mass) effects of spring and autumn phenology on winter survival of 2315 mule deer fawns across a wide range of environmental conditions in Idaho, USA. We first performed a functional analysis that identified spring and autumn as the key periods for structuring the among-population and among-year variation of primary production (approximated from 1 km Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (NDVI)) along the growing season. A path analysis showed that early winter precipitation and direct and indirect effects of spring and autumn NDVI functional components accounted for 45% of observed variation in overwinter survival. The effect size of autumn phenology on body mass was about twice that of spring phenology, while direct effects of phenology on survival were similar between spring and autumn. We demonstrate that the effects of plant phenology vary across ecosystems, and that in semi-arid systems, autumn may be more important than spring for overwinter survival.  相似文献   

11.
Questions: What are the patterns of remotely sensed vegetation phenology, including their inter‐annual variability, across South Africa? What are the phenological attributes that contribute most to distinguishing the different biomes? How well can the distribution of the recently redefined biomes be predicted based on remotely sensed, phenology and productivity metrics? Location: South Africa. Method: Ten‐day, 1 km, NDVI AVHRR were analysed for the period 1985 to 2000. Phenological metrics such as start, end and length of the growing season and estimates of productivity, based on small and large integral (SI, LI) of NDVI curve, were extracted and long‐term means calculated. A random forest regression tree was run using the metrics as the input variables and the biomes as the dependent variable. A map of the predicted biomes was reproduced and the differentiating importance of each metric assessed. Results: The phenology metrics (e.g. start of growing season) showed a clear relationship with the seasonality of rainfall, i.e. winter and summer growing seasons. The distribution of the productivity metrics, LI and SI were significantly correlated with mean annual precipitation. The regression tree initially split the biomes based on vegetation production and then by the seasonality of growth. A regression tree was used to produce a predicted biome map with a high level of accuracy (73%). Main conclusion: Regression tree analysis based on remotely sensed metrics performed as good as, or better than, previous climate‐based predictors of biome distribution. The results confirm that the remotely sensed metrics capture sufficient functional diversity to classify and map biome level vegetation patterns and function.  相似文献   

12.
Aim Broad‐scale spatial patterns of species richness are very strongly correlated with climatic variables. If there is a causal link, i.e. if climate directly or indirectly determines patterns of richness, then when the climatic variables change, richness should change in the manner that spatial correlations between richness and climate would predict. The present study tests this prediction using seasonal changes in climatic variables and bird richness. Location We used a grid of equal area quadrats (37 000 km2) covering North and Central America as far south as Nicaragua. Methods Summer and winter bird distribution data were drawn from monographs and field guides. Climatic data came from published sources. We also used remotely sensed NDVI (normalized difference vegetation index — a measure of greenness). Results Bird species richness changes temporally (between summer and winter) in a manner that is close to, but statistically distinguishable from, the change one would predict from models relating the spatial variation in richness at a single time to climatic variables. If one further takes into account the seasonal changes in NDVI and within‐season variability of temperature and precipitation, then winter and summer richness follow congruent, statistically indistinguishable patterns. Main conclusions Our results are consistent with the hypothesis that climatic variables (temperature and precipitation) and vegetation cover directly or indirectly influence patterns of bird species richness.  相似文献   

13.
Long‐lived animals with a low annual reproductive output need a long time to recover from population crashes and are, thus, likely to face high extinction risk, if the current global environmental change will increase mortality rates. To aid conservation of those species, knowledge on the variability of mortality rates is essential. Unfortunately, however, individual‐based multiyear data sets that are required for that have only rarely been collected for free‐ranging long‐lived mammals. Here, we used a five‐year data set comprising activity data of 1,445 RFID‐tagged individuals of two long‐lived temperate zone bat species, Natterer's bats (Myotis nattereri) and Daubenton's bats (Myotis daubentonii), at their joint hibernaculum. Both species are listed as being of high conservation interest by the European Habitats Directive. Applying mixed‐effects logistic regression, we explored seasonal survival differences in these two species which differ in foraging strategy and phenology. In both species, survival over the first winter of an individual's life was much lower than survival over subsequent winters. Focussing on adults only, seasonal survival patterns were largely consistent with higher winter and lower summer survival but varied in its level across years in both species. Our analyses, furthermore, highlight the importance of species‐specific time periods for survival. Daubenton's bats showed a much stronger difference in survival between the two seasons than Natterer's bats. In one exceptional winter, the population of Natterer's bats crashed, while the survival of Daubenton's bats declined only moderately. While our results confirm the general seasonal survival pattern typical for hibernating mammals with higher winter than summer survival, they also show that this pattern can be reversed under particular conditions. Overall, our study points toward a high importance of specific time periods for population dynamics and suggests species‐, population‐, and age class‐specific responses to global climate change.  相似文献   

14.
Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940''s has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.  相似文献   

15.
Seasonal Response of Grasslands to Climate Change on the Tibetan Plateau   总被引:1,自引:0,他引:1  

Background

Monitoring vegetation dynamics and their responses to climate change has been the subject of considerable research. This paper aims to detect change trends in grassland activity on the Tibetan Plateau between 1982 and 2006 and relate these to changes in climate.

Methodology/Principal Findings

Grassland activity was analyzed by evaluating remotely sensed Normalized Difference Vegetation Index (NDVI) data collected at 15-day intervals between 1982 and 2006. The timings of vegetation stages (start of green-up, beginning of the growing season, plant maturity, start of senescence and end of the growing season) were assessed using the NDVI ratio method. Mean NDVI values were determined for major vegetation stages (green-up, fast growth, maturity and senescence). All vegetation variables were linked with datasets of monthly temperature and precipitation, and correlations between variables were established using Partial Least Squares regression. Most parts of the Tibetan Plateau showed significantly increasing temperatures, as well as clear advances in late season phenological stages by several weeks. Rainfall trends and significant long-term changes in early season phenology occurred on small parts of the plateau. Vegetation activity increased significantly for all vegetation stages. Most of these changes were related to increasing temperatures during the growing season and in some cases during the previous winter. Precipitation effects appeared less pronounced. Warming thus appears to have shortened the growing season, while increasing vegetation activity.

Conclusions/Significance

Shortening of the growing season despite a longer thermally favorable period implies that vegetation on the Tibetan Plateau is unable to exploit additional thermal resources availed by climate change. Ecosystem composition may no longer be well attuned to the local temperature regime, which has changed rapidly over the past three decades. This apparent lag of the vegetation assemblage behind changes in climate should be taken into account when projecting the impacts of climate change on ecosystem processes.  相似文献   

16.
Populations of migratory birds have undergone marked declines, although the causes and mechanisms remain unknown. Because environmental effects on population dynamics are mediated by the effects of ecological factors on individuals, understanding changes in individual phenotypes in response to ecological conditions is key to understanding population trends. We show that breeding individuals of a declining population of trans-Saharan migratory barn swallows, Hirundo rustica, were affected by environmental conditions, as estimated from the normalized difference vegetation index (NDVI), reflecting primary production, in their winter quarters. The breeding dates of the same individuals in consecutive breeding seasons were advanced and clutch sizes were larger after winters with high NDVI in the winter quarters. Feather moult was also affected by winter conditions, with consequences for male sexual attractiveness. Length of tail ornament was positively correlated with NDVI during the previous winter, and males with large tail ornaments reproduced earlier and had larger clutches. The mean annual breeding date of the population was earlier and breeding success was increased after favourable winters, but this result was mainly determined by a single winter with very low NDVI. Thus, ecological conditions in Africa influence individual performance and productivity in a barn swallow population.  相似文献   

17.
Dwyer CM 《Theriogenology》2003,59(3-4):1027-1050
The survival of the neonate relies on the integrated expression of appropriate behaviours from both the mother and young. In precocious species, like the sheep, the speed with which the lamb stands and seeks the udder is related to lamb survival. In this study the effects of birth difficulty, lamb birth weight, ewe loss or gain in backfat from conception to delivery, ewe parity, litter size, and lamb sex on neonatal lamb behavioural development were investigated in over 500 lambs of two breeds (Scottish Blackface and Suffolk). Lambs that required assistance to be delivered were significantly slower to perform all neonatal behaviours than unassisted lambs (P<0.001), and were less active over the first 3 days after delivery (P<0.05). There were no effects of lamb birthweight that were not accounted for by the increased likelihood of requiring assistance in heavier birth weight lambs. Ewes that mobilised less body fat during their pregnancy produced lambs that stood and sucked quickly (P<0.001), and were more active over the first 3 days of life. Lambs born to first parity ewes were slower to stand and suck than lambs born to experienced ewes (P<0.001). There was an improvement in time taken by lambs to stand, seek the udder and to suck with each increase in ewe parity. Litter size had an additional retarding influence on the behaviour of multiple-born lambs that could not be accounted for by birthweight. In the Suffolk breed male lambs were slower to stand and suck than female lambs, this effect was not seen in Blackface lambs. These data demonstrate that lambs that require assistance at birth, even if they survive the birth process, lambs born to ewes that lose a lot of condition over pregnancy or first parity ewes, triplet lambs and, at least in some breeds, male lambs are slower to progress through the sequence of neonatal behaviours. These lambs are, therefore, at greater risk of not surviving to weaning.  相似文献   

18.
Annual variation in growth rate and sucking behaviour of lambs was studied in a fluctuating population of Soay sheep on Hirta, St. Kilda. Growth rates during the summer declined with increasing population size in the previous autumn despite an increase in time spent sucking in the first six weeks of life. The increase in time spent sucking was due largely to an increase in sucking frequency and, since a higher proportion of sucking attempts were rejected, probably reflected that lambs obtain little milk as a result of poor maternal condition following winters at high population density. After accounting for the density dependent variation, annual differences in lamb growth rates were positively related to the increase in biomass of live grasses and forbs between spring and summer. Since food availability was influenced strongly by the numbers surviving the winter, lambs born after the very high mortality at peak population density were able to compensate to some extent for their poor initial growth. However, improved food availability was never sufficient to facilitate complete catch-up growth and may permanently influence adult size and reproduction.  相似文献   

19.
Spatial heterogeneity in coral reef communities is well documented. This “species turnover” (beta diversity) on shallow warm-water reefs strongly conforms to spatial gradients in the environment as well as spatially autocorrelated biotic processes such as dispersal and competition. But the extent to which the environment and spatial autocorrelation create beta diversity on deep cold-water coral reefs such as those formed by Lophelia pertusa (Scleractinia) is unknown. The effects of remotely sensed and ground-truthed data were tested on the community composition of sessile suspension-feeding communities from the Mingulay Reef Complex, a landscape of inshore Lophelia reefs off the Scottish west coast. Canonical correspondence analysis determined that a statistically significant proportion (68%) of the variance in community composition could be explained by remotely sensed environmental variables (northerly and easterly aspect, seabed rugosity, depth), ground-truthed environmental variables (species richness and reef macrohabitat) and geospatial location. This variation was further partitioned into fractions explained by pure effects of the environment (51%), spatially structured environmental variables (12%) and spatial autocorrelation (5%). Beta diversity in these communities reflected the effects of both measured and unmeasured and spatially dependent environmental variables that vary across the reef complex, i.e., hydrography. Future work will quantify the significance and relative contributions of these variables in creating beta diversity in these rich communities.  相似文献   

20.
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350–1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land‐atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~?7.5 g C m?2 day?1 during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350–1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号