首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Resource heterogeneity across the landscape prompts animals to make behavioral tradeoffs to survive and reproduce. Behavioral thermoregulation can buffer organisms from thermal extremes but may conflict with other essential activities such as predator avoidance or foraging, and necessitate tradeoffs among resource requirements. We evaluated patterns of habitat selection relative to thermal conditions, forage availability, and concealment cover for female eastern wild turkeys (Meleagris gallopavo silvestris) with broods to assess potential tradeoffs among resource requirements. We quantified air temperature (°C), vegetation characteristics (e.g., visual obstruction), and arthropod biomass (g/m2) at locations used by broods across 5 study sites in the southeastern United States during May–July 2019–2020. We used conditional logistic regression to estimate brooding female resource selection at the second (home range) and third (within home range) orders. Specifically, we identified differences in selection between brooding and non-brooding females (second order), and factors influencing selection of sites used by brooding females during the day (when loafing and foraging) and night (roosting; third order). Brooding females selected sites with cooler temperatures (β = −0.22; 95% CI = −0.338–−0.102) and greater ground cover vegetation (β = 0.02; 95% CI = 0.013–0.033) than non-brooding females. Additionally, biomass of large prey (Orthoptera) was positively related to ambient temperature, suggesting that use of thermal refuge by brooding females may limit availability of large prey. Brooding females appeared to balance the tradeoff between thermal refuge and forage availability by altering habitat selection patterns within home ranges. Brooding females selected for herbaceous areas that provided greater biomass of large arthropods during the day, and avoided areas dominated by woody vegetation during both the day and night. We did not observe brooding females using locations where woody cover exceeded 27% of understory vegetation. Thermal refuge is an important component of brood habitat, but within thermally suitable areas brooding females can select sites with greater availability of large prey to meet energetic demands of broods. Evaluation of multiple spatial scales is key when assessing tradeoffs among resource needs and determining the potential of behavioral thermoregulation to buffer an organism's thermal environment and allow persistence in a warming climate.  相似文献   

2.
Efforts to halt the decline of the northern bobwhite (Colinus virginianus; bobwhite) across its distribution have had limited success. Understanding bobwhite habitat requirements across the annual cycle and at varying scales is essential to aid efforts to conserve bobwhites. We monitored radio-tagged bobwhites from 2016 to 2018 on a 165-km2 portion of Fort Bragg Military Installation in the Sandhills physiographic region of North Carolina, USA, to determine factors influencing non-breeding bobwhite habitat selection at multiple scales. We used generalized linear models (GLM) and generalized linear mixed models to assess bobwhite habitat selection at the microsite scale (the immediate vicinity of an animal) and the macrosite scale (across the study area), respectively, by comparing used points to available random points. At the microsite scale, bobwhites strongly selected areas with greater woody understory cover. Also, bobwhite selection increased with greater forb and switchcane (Arundinaria tecta) cover, but this effect plateaued at 65% forb cover and 50% switchcane cover. At the macrosite scale, bobwhites generally selected areas with greater understory cover within a 200-m radius but avoided areas with >55% understory cover; these areas primarily were located in the core areas of drainages with extensive ericaceous vegetation. Bobwhites selected areas with 3–6 m2/ha hardwood basal area in uplands, potentially because of the availability of mast, but avoided uplands when pine (Pinus spp.) or hardwood basal area exceeded 20 m2/ha or 12 m2/ha, respectively, likely because high basal area is associated with increased shading and subsequent loss of understory cover. In addition, bobwhites selected uplands 1 growing season (≥2-month period falling entirely between 1 Apr and 1 Oct) post-fire regardless of burn season. Overall, managers seeking to improve habitat quality for bobwhites in longleaf pine (Pinus palustris) woodlands should employ management practices that maintain available woody understory across the landscape to provide cover during the non-breeding season. © 2020 The Wildlife Society.  相似文献   

3.
Prescribed fire is an increasingly important management tool for eastern deciduous forests, but relativity little is known about the direct effects of fire on the eastern box turtle (Terrapene carolina carolina). We used very high frequency (VHF) transmitters to monitor mortality, movement, and spatial ecology of 118 box turtles in response to 17 prescribed fires across 4 seasons and 3 sites in east Tennessee, USA, during 2016–2018. Annual survival of box turtles that experienced a prescribed fire event was lower (0.87 ± 0.04 [SE]) than turtles that did not (0.98 ± 0.01) and was negatively correlated with fire intensity, fire temperature the turtle experienced, and litter depth. All prescribed fire-related mortalities occurred during the early (Apr–May, n = 5) or late growing season (Sep–Oct, n = 1). Fourteen percent of box turtles we captured exhibited damage to their carapace from previous fire events. Box turtles that survived prescribed fires were in microsites that did not burn, moved to unburned areas during the fire, or burrowed following ignition. Home range size was similar before and after burns and sinuosity of movements did not differ in burned or unburned areas. Our results indicate that though box turtles are susceptible to prescribed fire during their active season, they have behavioral and physical traits that reduce the direct effects of prescribed fire. Prescribed fire practitioners should be aware of the risks of fire, particularly during the active season. We suggest managers consider altering prescribed fire intensity, seasonality, and firing pattern to minimize risk of direct effects where box turtles are of concern. © 2020 The Wildlife Society.  相似文献   

4.
The eastern massasauga rattlesnake (Sistrurus catenatus catenatus) has experienced population declines throughout its range and is now a candidate for federal protection. However, little is known about massasauga habitat selection in Michigan, particularly in actively managed landscapes. Our objectives were to: 1) quantify whether massasaugas in southwestern Michigan select certain vegetation types disproportionately to their availability and 2) quantify whether the vegetation structure associated with snake locations differed between managed (e.g., burning, woody species removal) and unmanaged stands. We implanted radio transmitters in 51 snakes from 2004 to 2005 and 2008 to 2009. We quantified second-order resource selection using compositional analysis, and modeled the effect of habitat management efforts on vegetation using 4 structural variables. All snakes selected cover types disproportionately to their availability (P = 0.001); a ranking matrix ordered the vegetation types, from most to least used, as: early-mid successional deciduous wetland > early-mid successional deciduous upland > developed > late successional mixed lowland forest > late successional deciduous upland forest. We found that snakes in managed areas were associated with greater amounts of dead herbaceous cover (P = 0.005) and less woody stem density (P < 0.001) and tree dominance (P < 0.001) than were snakes in unmanaged areas; however, live herbaceous cover was comparable. Our results can be used by regional managers to provide early and mid successional habitat with structure similar to that selected by snakes in Michigan. © 2011 The Wildlife Society.  相似文献   

5.
ABSTRACT Greater Roadrunners (Geococcyx californianus) are common, poorly studied birds of arid and semi‐arid ecosystems in the southwestern United States. Conservation of this avian predator requires a detailed understanding of their movements and spatial requirements that is currently lacking. From 2006 to 2009, we quantified home‐range and core area sizes and overlap, habitat selection, and survival of roadrunners (N= 14 males and 20 females) in north‐central Texas using radio‐telemetry and fixed kernel estimators. Median home‐range and core‐area sizes were 90.4 ha and 19.2 ha for males and 80.1 ha and 16.7 ha for females, respectively. The size of home range and core areas did not differ significantly by either sex or season. Our home range estimates were twice as large (x?= 108.9 ha) as earlier published estimates based on visual observations (x?= 28–50 ha). Mean percent overlap was 38.4% for home ranges and 13.7% for core areas. Male roadrunners preferred mesquite woodland and mesquite savanna cover types, and avoided the grass‐forb cover type. Female roadrunners preferred mesquite savanna and riparian woodland cover types, and avoided grass‐forb habitat. Kaplan‐Meier annual survival probabilities for females (0.452 ± 0.118[SE]) were twice that estimated for males (0.210 ± 0.108), but this difference was not significant. Mortality rates of male roadrunners were higher than those of females during the spring when males call from elevated perches, court females, and chase competing males. Current land use practices that target woody‐shrub removal to enhance livestock forage production could be detrimental to roadrunner populations by reducing availability of mesquite woodland and mesquite savanna habitat required for nesting and roosting and increasing the amount of grass‐forb habitat that roadrunners avoid.  相似文献   

6.
Healthy wetlands play a significant role in climate change mitigation by storing carbon that would otherwise contribute to global warming, leading to the reduction of water and food resources as well as more extreme weather phenomena. Investigating the magnitude of carbon storage potential of different freshwater wetland systems using multiple ecological indicators at varying spatial scales provides insight and justification for selective wetland restoration and conservation initiatives. We provide a holistic accounting of total carbon values for 193 wetland sites, integrating existing carbon algorithms to rapidly assess each of the following carbon pools: above-ground, below-ground, soil, woody debris, shrub cover, and herbaceous cover. Aspects of soil, vegetation, and ecosystem characteristics and stressors were measured to obtain an overall understanding of the ecosystems ability to store carbon (long-term) along a gradient of human disturbance. Based on a review of the literature, methods were prioritized based on the initial data available from field measurements as well as their practicality and ease in replicating the process in the future. Lacustrine human impounded (88.7?±?18.0 tC/ha), riverine beaver impounded (116.2?±?29.4 tC/ha), riverine upper perennial (163.3?±?11.8 tC/ha), riverine lower perennial (199.2?±?24.7 tC/ha), riverine headwater complex (159.5?±?22.2 tC/ha), perennial/seasonal depression (269.6?±?42.4 tC/ha), and slope (162.2?±?14.6 tC/ha) wetland types were compared. Overall results showed moderate variability (9.33–835.95 tC/ha) for total carbon storage values across the wetland types, with an average total carbon storage of 174.6?±?8.8 tC/ha for all wetlands. Results show that carbon storage was significantly higher (p?=?0.002) in least disturbed wetland sites. Apart from perennial/seasonal depression wetlands, all reference standard wetlands had greater carbon storage, less disturbance impact, and a greater extent of forest cover than non-reference wetlands. Carbon storage values calculated were comparable to published literature.  相似文献   

7.
Mining disturbs large forested areas around the world, including boreal forests after oil sands mining in Canada. Industrial companies are expected to reclaim degraded land to ecosystems with equivalent land capability. This research showed the value of woody debris for reclamation of dramatically disturbed landscapes with a forest ecosystem end land use. Adding woody debris during reclamation can facilitate recovery of flora, soil nutrient cycling and water and nutrient holding capacity. Combined with forest floor material, woody debris can provide native plant propagules that would be otherwise commercially unavailable. Sites with and without woody debris on forest floor material containing identifiable litter (L), fragmented and fermented litter (F), and humus (H) (LFH), and peat mineral soil mix (peat) cover soils were studied. Within 2 years, woody debris decreased bare ground and created microsites which were positively associated with greater vegetation cover and woody plant density. Woody debris treatments had lower soil available nitrate and soil under woody debris had a lower temperature range and higher soil volumetric water content than control treatments without woody debris. Woody debris did not affect first year microbial biomass carbon or mycorrhizae, but both were greater on LFH than peat cover soil. LFH was associated with lower bare ground and greater vegetation cover, species richness, and soil phosphorus and potassium than peat cover soil, which had greater soil sulfate .  相似文献   

8.
Shifts in resource use may be an important mechanism by which organisms can adjust to novel environmental conditions, such as those imposed by climate change. However, for such shifts to be possible, environmental space must exist into which organisms can move. Habitat that ensures successful survival and reproduction is one such critical resource. We studied resource selection of shade cover over nest sites by painted turtles in populations in Illinois (center of range) and New Mexico (southern edge of range). We targeted this habitat feature because shade can influence hatching success and offspring phenotype (including sex in the study species) by affecting nest microenvironments. We found that while turtles in both populations selected nest sites that were shadier than average available sites, overall resource selection differed between the populations. This disparity may have been due to differences in structure of vegetation that provides shade at each site, because areas with high shade cover in New Mexico (low dense thickets) were much more difficult for turtles to access than those in Illinois (dense tree canopy cover). Further, shade cover predicted different parameters of incubation regime at each site, suggesting that turtles must assess dissimilar components of shade cover in order to choose nest sites and predict their future incubation regimes. Our results suggest that shade cover within nesting areas is a key component of painted turtle habitat, and that accessible, highly-shaded nest sites may be limited at the New Mexico site. Maintaining a range of shade cover from which turtles can select nest sites would permit plasticity in nest-site choice to be expressed, which may be important in preventing sex ratio skews due to climate change.  相似文献   

9.
Despite the acknowledged importance of prescribed fire in creating northern bobwhite (Colinus virginianus) breeding cover, little research has investigated bobwhite breeding season habitat selection relative to time since fire. In 2016 and 2017, we monitored radio-tagged bobwhite on a 17,000-ha portion of a military installation managed with frequent (every ~3 years) prescribed fires, applied during the growing and dormant seasons. We monitored bobwhite to determine which vegetation characteristics associated with prescribed burning were important to bobwhite breeding season habitat selection at the microsite (i.e., telemetry location compared to nearby random location) and the macrosite scale (i.e., the burn-unit containing the location compared to study area availability). During 2 breeding seasons, we collected 2,315 bobwhite locations and compared percent cover of vegetation, days since burn, basal area, and distance to key landscape features (e.g., stream, wildlife opening) at a subset of microsite locations (301 locations during 2016 and 890 locations during 2017) to paired random locations. At the microsite scale, bobwhite selected lower basal area of hardwoods, greater woody understory cover, greater other (not wiregrass [Aristida stricta]) grass cover, and greater forb cover than at random points. At the macrosite scale, bobwhite selected units with <4.6 m2/ha basal area (combined hardwoods and pines) in 2016 and units with <9.2 m2/ha basal area in 2017. At the macrosite scale, bobwhite selected for areas burned in the dormant season of the same year, avoided areas burned in the growing season of the same year, and used other times since last burn categories proportionate to their availability. The selection for a low basal area at both scales indicates prescribed fire effects would be limited by shading from dense overstory, and the shrubs, grasses, and forbs that provide essential cover for bobwhite during the breeding season will not develop. In lower productivity soil regions similar to our study area, we advise that thinning operations set target basal areas below 10 m2/ha to create and maintain breeding season habitat for northern bobwhite. © 2019 The Wildlife Society  相似文献   

10.
In the last century, bottomland hardwood (BLH) forests throughout the Lower Mississippi Alluvial Valley in the United States declined >80% and have been degraded because of habitat loss, fragmentation, and altered hydrology. To better understand how current conditions in BLH forest systems influence wildlife and to better manage land use and vegetation, we characterized winter (Dec–Mar) multi-scale habitat selection of 75 radio-marked swamp rabbits (Sylvilagus aquaticus) based on 850 locations in southern Illinois, USA, during 2010–2016. We investigated habitat selection by fitting resource selection functions with generalized linear mixed models based on Euclidean distances (km) to 8 cover types that described hydrogeomorphic conditions. At the second-order scale of selection (home range selection), swamp rabbits were closer to deciduous forest and low-elevation BLH and farther from agriculture, permanent water, shallow BLH, and woody wetland. At the third-order scale of selection (habitat selection within the home range), swamp rabbits selected areas closer to deciduous forest, low BLH, and shallow BLH, and farther from woody wetlands. For the swamp rabbit in Illinois, a BLH specialist at the northern extent of their range, habitat selection is limited to available terrestrial habitat that provides vegetation for food and hiding cover within linear and flood-prone BLH corridors surrounded by agricultural cover types that are largely unsuitable as habitat. Because hydrologic conditions are spatially and temporally dynamic, wildlife managers should focus on providing diverse habitat conditions across elevations that ensure the continuous availability of terrestrial habitat regardless of water level and flooding extent across the BLH landscape. Further reforestation efforts in BLH ecosystems should target current agricultural land on higher elevations adjacent to characteristically flood-prone forest remnants that escaped agricultural clearing due to frequent flooding. © 2021 The Wildlife Society.  相似文献   

11.
Abstract Resource selection is a multi-staged process of behavioral responses to various resource cues or stimuli. Previous research suggests some aspects of resource selection may be inherent (i.e., genetic predisposition) or based on early experience and that individuals respond to certain resource cues but not to others. In other words, resource selection may be based on a template that specifies which cues to use in the resource-selection process and the appropriate response to those cues. We used resource utilization functions (RUFs) to examine the resource-selection template of translocated three-toed box turtles (Terrapene carolina triunguis; hereafter turtles) and made comparisons to resident turtles. Translocated turtles, previously residents of a predominantly forested landscape with low edge-density, used forest openings, forest edges, and southwest-facing slopes before and after translocation to a fragmented site containing resident turtles. In contrast, resident turtles used forested areas and northeast-facing slopes within a predominantly open landscape with high edge-density. Our comparison of resource selection by translocated and resident turtles revealed population-specific resource selection and consistency in selection following translocation, which reinforces the idea of a resource-selection template and suggests that in the short-term box turtles may not adapt their predisposed behavior to local conditions. Thus, translocated animals may evaluate and respond to resource cues as if they were at the original site. Lack of site fidelity may result from individuals seeking additional resources to match their resource-selection template. Successful translocation of turtles may require an assessment of resource selection prior to translocation and development of management strategies that mitigate turtle response to translocation.  相似文献   

12.
Ground fuel loads and structure in dark-coniferous forests with the dominance of Siberian pine have been studied in the Central Siberian State Nature Biosphere Reserve located in the central-taiga zone of Central Siberia. The impacts of surface fires of various forms and severity on the living ground cover are examined. It is found that fires of low to moderate severity reduce ground fuel loads from 35–49 t/ha to 26–28 t/ha, while fires of moderate to high severity reduce them to 17–18 t/ha. Consumption of down woody debris varies from 3 to 29 t/ha, depending on the prefire fuel characteristics and fire form and severity. Steady fires spreading with the fire danger index PV-1 of 3919 ± 482 result in carbon emissions of 14.0 tC/ha from fires of low to moderate severity and 24.6 tC/ha from fires of moderate to high severity. The lowest carbon emissions (10.1 tC/ha) are noted for fast-moving fires spreading with PV-1 of 1167 ± 386.  相似文献   

13.
14.
ABSTRACT Loss of nesting habitat is believed to be a factor in the decline of greater sage-grouse (Centrocercus urophasianus) throughout its range. Few data are available for sage-grouse in Mono County, California, USA, in the most southwestern portion of the species’ range. We studied habitat selection of nesting sage-grouse in Mono County, California, from 2003 to 2005 by capturing and radiotracking females to identify nesting locations. We sampled vegetation at nest sites and randomly selected sites within 200 m of nests and within each of 5 subareas within Mono County. Nest sites were characterized by 42.4 ± 1.3% ( ± SE) shrub canopy cover, 10.5 ± 1.0 cm residual grass height, and 2.7 ± 1.0% residual grass cover. Shrub cover was the only variable found to differentiate nest sites from randomly selected sites. Unlike some other studies, we did not find understory vegetation to be important for selecting nest sites. Mean shrub cover was 38.7 ± 1.5% at random sites within 200 m of nests and 33.6 ± 1.6% at random sites at the approximate scale of home ranges, indicating that nesting females selected nesting areas that contained denser shrubs than their home range, and nest sites that contained greater shrub cover than the vicinity immediately surrounding nests. Our results suggest that managers should consider managing for greater shrub cover in Mono County than what is currently called for in other parts of sage-grouse range and that management for sage-grouse habitat may need to be tied more closely to local conditions.  相似文献   

15.
Aim Encroachment or densification by woody plants affects natural ecosystems around the world. Many studies have reported encroachment in temperate Australia, particularly in coastal ecosystems and grassy woodlands. However, the degree to which published studies reflect broad-scale changes is unknown because most studies intentionally sampled areas with conspicuous densification. We aimed to estimate changes in woody vegetation cover within lowland grassy woodland and coastal ecosystems in Victoria from 1989 to 2005 to determine whether published reports of recent encroachment are representative of broad-scale ecosystem changes. Location All lowland grassy woodland and coastal ecosystems (c. 6.11 × 105 ha) in Victoria, Australia. Four major ecosystems were analysed: Plains woodlands, Herb-rich woodlands, Riverine woodlands and Coastal vegetation. Methods Changes in woody vegetation cover from 1989 to 2005 were assessed based on state-wide vegetation maps and Landsat analyses of woody vegetation cover conducted by the Australian Greenhouse Office’s National Carbon Accounting System. The results show changes in woody cover within mapped patches of native vegetation, rather than changes in the extent of woody vegetation resulting from clearing and revegetation. Results When pooled across all ecosystems, woody vegetation increased by 18,730 ha from 1989 to 2005. Woody cover within Riverine woodlands and within Plains woodlands each increased by >7000 ha. At the patch scale, the mean percentage cover of woody vegetation in each polygon increased by >5% in all four ecosystems: Riverine woodlands (+9.2% on average), Herb-rich woodlands (+7.6%), Plains woodlands (+6.7%) and Coastal vegetation (+5.9%). Regression models relating degree of encroachment to geographic and climatic variables were extremely weak (r2 ≤ 0.026), indicating that most variation occurred at local scales rather than across broad geographic gradients. Main conclusions At the scale of observation, woody vegetation cover increased in all lowland woodland and coastal ecosystems over the 16-year period. Thus, published examples of encroachment in selected coastal and woodland patches do appear to reflect widespread increases in woody vegetation cover in these ecosystems. This densification appears to be associated with changes in land management rather than with post-fire vegetation recovery and is likely to be ongoing and long-lasting, with substantial implications for biodiversity conservation and ecosystem services.  相似文献   

16.
ABSTRACT Since the 1940s, eastern spotted skunks (Spilogale putorius) have declined dramatically throughout the Midwest. One hypothesis for the decline is the loss of suitable habitat, although little is known about the ecological requirements of this species. To elucidate seasonal home range and habitat selection by eastern spotted skunks, we conducted telemetry-based field work in the Ouachita Mountains of western Arkansas, USA. During 2 years of field work, we collected day- and nighttime radiolocations for 33 eastern spotted skunks. We used kernel-based utilization distributions, volume of intersection indices, and weighted compositional analysis to evaluate seasonal home range dynamics and habitat selection. Although we found moderate adult male site fidelity, there were large seasonal differences in home range size, with ranges of between 76 ha and 175 ha (± 22–62 SE) during summer, fall, and winter, and home ranges of 866 ha (± 235 SE) during spring. Male home range increases in the spring were likely caused by questing behavior in search of reproductive females. Females maintained home ranges of 54 ha to 135 ha (± 7–30 SE) and moderate site fidelity during all seasons. During each season, we observed selection of young shortleaf pine (Pinus echinata) and hardwood stands over other available cover types, likely due to a preference for a dense, complex understory and a closed canopy overstory to reduce predation risk. Most habitats in the study region were managed for an herbaceous understory and an older, more open canopy, in part to benefit red-cockaded woodpecker (Picoides borealis) populations. Thus, if simultaneous management for these 2 vertebrates is a goal, a balance of early and late successional habitat should be reached.  相似文献   

17.
Abstract: In the mid-Atlantic region, urban sprawl and development have resulted in habitat alterations and fragmentation; however, the effects on eastern box turtle (Terrapene carolina carolina) populations are unclear. To investigate the status of eastern box turtle populations in a fragmented landscape, we used mark—recapture and radiotelemetry to estimate population density, sex ratio, age structure, and survival on 4 study areas with differing degrees of isolation and human disturbance in northern New Castle County, Delaware, USA. We estimated adult population densities ranging from 0.81 turtles/ha to 3.62 turtles/ha among our 4 study areas. Sex ratios were male-biased at 2 study areas and balanced at 2 study areas. Proportion of juveniles ranged from 0% to 31%. Estimated annual survival rate ranged from 0.813 to 0.977. Mortality of radiotagged and marked turtles was primarily due to natural causes, but mowing was the primary cause of human-induced mortality. We found evidence of population decline at one study area due to low survival and recruitment. Human disturbances, isolation, and habitat composition appear to have the greatest influence on the box turtle populations we studied. To minimize mortality from human disturbance, we suggest planting crops adjacent to forest habitat that require no mowing or mowing at a height ≥15 cm. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):745–753; 2008)  相似文献   

18.
Abstract We studied den selection of Canada lynx (Lynx canadensis; hereafter lynx) at multiple ecological scales based on 57 dens from 19 females located in western Montana, USA, between 1999 and 2006. We considered 3 spatial scales in this analysis, including den site (11-m-radius circle surrounding dens), den area (100-m-radius circle), and den environ (1-km radius surrounding dens). Lynx denned in preexisting sheltered spaces created by downed logs (62%), root-wads from wind-thrown trees (19%), boulder fields (10%), slash piles (6%), and live trees (4%). Lynx preferentially selected den sites with northeasterly aspects that averaged 248. Average distance between dens of 13 females monitored in consecutive years was 2,248 m, indicating low den site fidelity. Lynx exhibited habitat selection at all 3 spatial scales. Based on logistic regression, den sites differed from the surrounding den areas in having higher horizontal cover and log volume. Abundant woody debris from piled logs was the dominant habitat feature at den sites. Lynx generally denned in mature spruce-fir (Picea-Abies) forests with high horizontal cover and abundant coarse woody debris. Eighty percent of dens were in mature forest stands and 13% in mid-seral regenerating stands; young regenerating (5%) and thinned (either naturally sparse or mechanically thinned) stands with discontinuous canopies (2%) were seldom used. Female lynx selected den areas with greater spruce-fir tree basal area, higher horizontal cover, and larger-diameter trees compared to random locations within their home range. Lynx selected den environs in topographically concave or drainage-like areas, and farther from forest edges than random expectation. Maintaining mature and mid-seral regenerating spruce-fir forests with high horizontal cover and abundant woody debris would be most valuable for denning when located in drainages or in concave, drainage-like basins. Management actions that alter spruce-fir forests to a condition that is sparsely stocked (e.g., mechanically thinned) and with low canopy closure (<50%) would create forest conditions that are poorly suitable for lynx denning.  相似文献   

19.
Most of our global population and its CO2 emissions can be attributed to urban areas. The process of urbanization changes terrestrial carbon stocks and fluxes, which, in turn, impact ecosystem functions and atmospheric CO2 concentrations. Using the Seattle, WA, region as a case study, this paper explores the relationships between aboveground carbon stocks and land cover within an urbanizing area. The major objectives were to estimate aboveground live and dead terrestrial carbon stocks across multiple land cover classes and quantify the relationships between urban cover and vegetation across a gradient of urbanization. We established 154 sample plots in the Seattle region to assess carbon stocks as a function of distance from the urban core and land cover [urban (heavy, medium, and low), mixed forest, and conifer forest land covers]. The mean (and 95% CI) aboveground live biomass for the region was 89±22 Mg C ha?1 with an additional 11.8±4 Mg C ha?1 of coarse woody debris biomass. The average live biomass stored within forested and urban land covers was 140±40 and 18±14 Mg C ha?1, respectively, with a 57% mean vegetated canopy cover regionally. Both the total carbon stocks and mean vegetated canopy cover were surprisingly high, even within the heavily urbanized areas, well exceeding observations within other urbanizing areas and the average US forested carbon stocks. As urban land covers and populations continue to rapidly increase across the globe, these results highlight the importance of considering vegetation in urbanizing areas within the terrestrial carbon cycle.  相似文献   

20.
Recognition that beavers are integral components of stream ecosystems has resulted in an increase in beaver‐mediated habitat restoration projects. Beaver restoration projects are frequently implemented in degraded stream systems with little or no beaver activity. However, selection of restoration sites is often based on habitat suitability research comparing well‐established beaver colonies to unoccupied stream sections or abandoned colonies. Because beavers dramatically alter areas they occupy, assessing habitat conditions at active colonies may over‐emphasize habitat characteristics that are modified by beaver activity. During 2015–2017, we conducted beaver activity surveys on streams in the upper Missouri River watershed in southwest Montana, United States, to investigate habitat selection by beavers starting new colonies in novel areas. We compared new colony locations in unmodified stream segments to unsettled segments to evaluate conditions that promoted colonization. Newly settled stream segments had relatively low gradients (β ± SE = ?0.72 ± 0.27), narrow channels (β = ?1.31 ± 0.46), high channel complexity (β = 0.76 ± 0.42), high canopy cover of woody riparian vegetation (β = 0.56 ± 0.21), and low‐lying areas directly adjacent to the stream (β = 0.36 ± 0.24), where β denotes covariate effect sizes. Habitat selection patterns differed between our new settlement site analysis and an analysis of occupied versus unoccupied stream segments, suggesting that assessing habitat suitability based on active colonies may result in misidentification of suitable site conditions for beaver restoration. Our research provides recommendations for beaver restoration practitioners to select restoration sites that will have the highest probability of successful colony establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号