首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have recently characterized Nicotiana cytoplasmic (cyt) tRNAGCA Cys as novel UGA suppressor tRNA. Here we have isolated its corresponding (NtC1) and a variant (NtC2) gene from a genomic library of Nicotiana rustica. Both tRNACys genes are efficiently transcribed in HeLa cell nuclear extract and yield mature cyt tRNAsCys. Sequence analysis of the upstream region of the RAD51 single-copy gene of the Arabidopsis thaliana genome revealed a cluster of three tRNACys genes which have the same polarity and comprise highly similar flanking sequences. Of the three Arabidopsis tRNACys genes only one (i.e. AtC2) appears to code for a functional gene which exhibits an almost identical nucleotide sequence to NtC1. These are the first sequenced nuclear tDNAsCys of plant origin.  相似文献   

3.
Translation is a central cellular process and is optimized for speed and fidelity. The speed of translation of a single codon depends on the concentration of aminoacyl-tRNAs. Here, we used microarray-based approaches to analyze the charging levels of tRNAs in Escherichia coli growing at different growth rates. Strikingly, we observed a non-uniform aminoacylation of tRNAs in complex media. In contrast, in minimal medium, the level of aminoacyl-tRNAs is more uniform and rises to approximately 60%. Particularly, the charging level of tRNASer, tRNACys, tRNAThr and tRNAHis is below 50% in complex medium and their aminoacylation levels mirror the degree that amino acids inhibit growth when individually added to minimal medium. Serine is among the most toxic amino acids for bacteria and tRNAsSer exhibit the lowest charging levels, below 10%, at high growth rate although intracellular serine concentration is plentiful. As a result some serine codons are among the most slowly translated codons. A large fraction of the serine is most likely degraded by L-serine-deaminase, which competes with the seryl-tRNA-synthetase that charges the tRNAsSer. These results indicate that the level of aminoacylation in complex media might be a competition between charging for translation and degradation of amino acids that inhibit growth.  相似文献   

4.
Bacteriophage T5 BglII/HindIII DNA fragment (803 basepairs), containing the genes for 2 tRNAs and 2 RNAs with unknown functions, was cloned in the plasmid pBR322. The analysis of DNA sequence indicates that tRNA genes code isoacceptor tRNAsSer (tRNASer1 and tRNASer2) with anticodons UGA and GGA, respectively. The main unusual structural feature of these tRNAs is the presence of extra non-basepaired nucleotides in the joinings of stem ‘b’ with stems ‘a’ and ‘c’.  相似文献   

5.
6.
Summary A bovine tRNA gene cluster has been characterized and the sequences of four tDNAs determined. Two of the tDNAs could encode tRNASer IGA, one tDNASer UGA, and the fourth tRNAGln CUG. The three serine tDNAs representing the UCN codon isoacceptor family are almost identical. However, the sequence of the tDNASer TGA differs from a previously sequenced bovine tDNASer TGA at 12 positions (ca. 14%). This finding suggests that in the bovine genome, two subfamilies of genes might encode tRNASer UGA. It also raises the possibility that new genes for a specific UCN isoacceptor might arise from the genes of a different isoacceptor, and could explain previously observed differences between species in the anticodons of coevolving pairs of tRNAsSer UCN. The gene cluster also contains complete and partial copies, and fragments, of the BCS (bovine consensus sequence) SINE (short interspersed nuclear element) family, six examples of which were sequenced. Some of these elements occur in close proximity to two of the serine tDNAs.  相似文献   

7.
Gu W  Li M  Zhao WM  Fang NX  Bu S  Frazer IH  Zhao KN 《Nucleic acids research》2004,32(15):4448-4461
Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972–4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNASer(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNASer(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNASer(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2α in the tRNASer(CGA) transfected L1 cell lines. The tRNASer(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.  相似文献   

8.
The three major glutamine tRNAs of Tetrahymena thermophila were isolated and their nucleotide sequences determined by post-labeling techniques. Two of these tRNAsGln show unusual codon recognition: a previously isolated tRNAGlnUmUA and a second species with CUA in the anticodon (tRNAGlnCUA). These two tRNAs recognize two of the three termination codons on natural mRNAs in a reticulocyte system. tRNAGlnUmUA reads the UAA codon of α-globin mRNA and the UAG codon of tobacco mosaic virus (TMV) RNA, whereas tRNAGlnCUA recognizes only UAG. This indicates that Tetrahymena uses UAA and UAG as glutamine codons and that UGA may be the only functional termination codon. A notable feature of these two tRNAsGln is their unusually strong readthrough efficiency, e.g. purified tRNAGlnCUA achieves complete readthrough over the UAG stop codon of TMV RNA. The third major tRNAGln of Tetrahymena has a UmUG anticodon and presumably reads the two normal glutamine codons CAA and CAG. The sequence homology between tRNAGlnUmUG and tRNAGlnUmUA is 81%, whereas that between tRNAGlnCUA and tRNAGlnUmUA is 95%, indicating that the two unusual tRNAsGln evolved from the normal tRNAGln early in ciliate evolution. Possible events leading to an altered genetic code in ciliates are discussed.  相似文献   

9.
A minimum of 37 genes corresponding to tRNAs for 17 different amino acids have been localized on the restriction endonuclease cleavage site map of theZea mays chloroplast DNA molecule. Of these, 14 genes corresponding to tRNAs for 11 amino acids are located in the larger of the two single-copy regions which separate the two inverted copies of the repeat region. One tRNA gene is in the smaller single-copy region. Each copy of the large repeated sequence contains, in addition to the ribosomal RNA genes, 11 tRNA genes corresponding to tRNAs for 8 amino acids. The genes for tRNA2 Ile and tRNAAla map in the ribosomal spacer sequence separating the 16S and 23S ribosomal RNA genes. The three isoaccepting species for the tRNAsLeu and the three for tRNAsSer, as well as the two isoaccepting species for tRNAAsn, tRNAGly, tRNAsIle, tRNAsMet, tRNAsThr, are shown to be encoded at different loci. Two independent methods have been used for the localization of tRNA genes on the physical map of the maize chloroplast DNA molecule: (a) cloned chloroplast DNA fragments were hybridized with radioactively-labelled total 4S RNAs, the hybridized RNAs were then eluted, and identified by two-dimensional polyacrylamide gel electrophoresis, and (b) individual tRNAs were32P-labelledin vitro and hybridized to DNA fragments generated by digestion of maize chloroplast DNA with various restriction endonucleases.  相似文献   

10.
Three tRNAsLeu from soybean chloroplasts were isolated and hybridized to restriction fragments of soybean chloroplast DNA. Based on the hybridization pattern, the locations of four genes coding for tRNA1Ley, tRNA2Leu (two genes tRNA2aLey and tRNA2bLeu, are present in the inverted repeat region) and tRNA3Leu were determined on the physical map of the soybean chloroplast genome.  相似文献   

11.
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington''s disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.  相似文献   

12.
The transient expression of three novel plant amber suppressors derived from a cloned Nicotiana tRNASer(CGA), an Arabidopsis intron-containing tRNATyr(GTA) and an Arabidopsis intron-containing tRNAMet(CAT) gene, respectively, was studied in a homologous plant system that utilized the Agro bacterium-mediated gene transfer to Arabidopsis hypocotyl explants. This versatile system allows the detection of β-glucuronidase (GUS) activity by histochemical and enzymatic analyses. The activity of the suppressors was demonstrated by the ability to suppress a premature amber codon in a modified GUS gene. Co-transformation of Arabidopsis hypocotyls with the amber suppressor tRNASer gene and the GUS reporter gene resulted in ~10% of the GUS activity found in the same tissue transformed solely with the functional control GUS gene. Amber suppressor tRNAs derived from intron-containing tRNATyr or tRNAMet genes were functional in vivo only after some additional gene manipulations. The G3:C70 base pair in the acceptor stem of tRNAMet(CUA) had to be converted to a G3:U70 base pair, which is the major determinant for alanine tRNA identity. The inability of amber suppressor tRNATyr to show any activity in vivo predominantly results from a distorted intron secondary structure of the corresponding pre-tRNA that could be cured by a single nucleotide exchange in the intervening sequence. The improved amber suppressors tRNATyr and tRNAMet were subsequently employed for studying various aspects of the plant-specific mechanism of pre-tRNA splicing as well as for demonstrating the influence of intron-dependent base modifications on suppressor activity.  相似文献   

13.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

14.
A divE mutant, which has a temperature-sensitive mutation in the tRNA1Ser gene, exhibits differential loss of the synthesis of certain proteins, such as β-galactosidase and succinate dehydrogenase, at nonpermissive temperatures. In Escherichia coli, the UCA codon is recognized only by tRNA1Ser. Several genes containing UCA codons are normally expressed after a temperature shift to 42°C in the divE mutant. Therefore, it is unlikely that the defect in protein synthesis at 42°C is simply caused by a defect in the decoding function of the mutant tRNA1Ser. In this study, we sought to determine the cause of the defect in lacZ gene expression in the divE mutant. It has also been shown that the defect in lacZ gene expression is accompanied by a decrease in the amount of lacZ mRNA. To examine whether inactivation of mRNA degradation pathways restores the defect in lacZ gene expression, we constructed divE mutants containing rne-1, rnb-500, and pnp-7 mutations in various combinations. We found that the defect was almost completely restored by introducing an rne-1 pnp-7 double mutation into the divE mutant. Northern hybridization analysis showed that the rne-1 mutation stabilized lacZ mRNA, whereas the pnp-7 mutation stabilized mutant tRNA1Ser, at 44°C. We present a mechanism that may explain these results.  相似文献   

15.
Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNALeu formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNALeu through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNASer (CatRNASer(CAG)) in addition to its cognate CatRNALeu, leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNASer, suggesting the significance of their highly divergent CTDs in tRNASer recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNASer and cognate CatRNALeu. Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.  相似文献   

16.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

17.
Summary Gametosomatic hybrids produced by the fusion of microspore protoplasts of Nicotiana tabacum Km+Sr+ with somatic cell protoplasts of N. rustica were analysed for their organelle composition. For the analysis of mitochondrial (mt)DNA, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA and mtDNA with four DNA probes of mitochondrial origin: cytochrome oxidase subunit I, cytochrome oxidase subunit II, 26s rDNA and 5s-18s rDNA. Of the 22 hybrids analyzed, some had parental-type pattern for some probes and novel-type for the others, indicating interaction between mtDNA of the two parent species. For chloroplast (cp)DNA analysis, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA with large subunits of ribulose bisphosphate carboxylase and cpDNA as probes. All the hybrids had N. rustica-specific patterns. Hybrids were not resistant to streptomycin, a trait encoded by the chloroplast genome of N. tabacum. In gametosomatic fusions of the two Nicotiana species, mitochondria but not the chloroplasts are transmitted from the parent contributing microspore protoplasts.  相似文献   

18.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

19.
Half molecules of serine-specific transfer ribonucleic acids from yeast   总被引:1,自引:0,他引:1  
The preparation and analysis of half molecules from tRNASer are described. Two pG-halves were isolated which differed only in the presence or absence of an acetyl group on the cytidylic acid residue at position 12. The CCA-half derived from tRNA1Ser was isolated pure, while the CCA-half derived from tRNA2Ser was isolated as a mixture with the CCA-half from tRNA1Ser from which the terminal CpCpA had been cleaved off.The acceptor activity of the combined complementary half molecules was 90% of the one of intact tRNASer. The Michaelis constant and maximal velocity of amino-acylation were found to be identical for tRNASer and the combined fragments.When half molecules were present at different ratios in aminoacylation studies it was found that one pG-half molecule can mediate the charging of several CCA-half molecules. There are indications that the CCA-half molecule alone can accept some serine. The CCA-half molecule alone can be aminoacylated to a rather high degree in the presence of an excess of tRNAoxSer or tRNASer-a and to a small degree in the presence of tRNAoxAla (yeast) but not at all in the presence of tRNAoxPhe or tRNAoxVal (E. coli).Combinations of half molecules from tRNASer with the opposite half molecules from tRNAPhe could not be aminoacylated with Ser or Phe or 15 other amino acids although one of the combinations was well associated according to gel electrophoresis and differential melting curves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号